Improving Liver Allocation: MELD, PELD, Status 1A, Status 1B

OPTN Liver and Intestinal Organ Transplantation Committee James Pomposelli, Chair

OPTN ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK

Purpose of Proposal

- Create a more equitable and efficient liver allocation system by updating policy for:
 - Model for end-stage liver disease (MELD) score
 - Pediatric end-stage liver disease (PELD) score
 - Status 1A and 1B requirements

- MELD 3.0 Overview:
 - Adds two new variables: current sex and albumin
 - Updates coefficients for existing variables (sodium, bilirubin, creatinine, and international normalized ratio (INR))
 - Introduces interaction terms between bilirubin and sodium and between albumin and creatinine
 - Caps creatinine at 3.0 mg/dL

- Current MELD:
 - Calculated using objective laboratory values to predict likelihood of 90-day mortality for waitlist candidates
 - Decreasing ability to predict likelihood of waitlist mortality since implementation in 2001
 - Use of creatinine in the MELD score disadvantages female candidates:
 - Females have decreased odds of liver transplantation within three years of listing compared to males
 - Females are more likely than males to die waiting for transplant or be removed from waitlist for being too sick for transplant

- "MELD 3.0: The Model for End-Stage Liver Disease Updated for the Modern Era" published in December 2021 *Gastroenterology* by Kim et al.
- MELD 3.0 is calculated as follows:

$$\begin{split} \text{MELD 3.0} &= 1.33 \text{ (if female)} + [4.56 \times \log_e(\textit{bilirubin})] + [0.82 \times (137-\textit{Sodium})] - [0.24 \times (137-\textit{Sodium}) \times \log_e(\textit{bilirubin})] + [9.09 \times \log_e(\textit{INR})] + [11.14 \times \log_e(\textit{creatinine})] + [1.85 \times (3.5-\textit{albumin})] - [1.83 \times (3.5-\textit{albumin})] \times \log_e(\textit{creatinine})] + 6 \end{split}$$

- MELD 3.0 better predicts candidate waitlist mortality compared to MELD Na
 - MELD 3.0 C-statistic: 0.869
 - MELD Na C-statistic: 0.862

Gastroenterology LSAM Modeling Results

MELD Model	Waitlist Deaths	Change in Waitlist Deaths	P-value
MELD Na	7,850	Not applicable	Not applicable
MELD 3.0 with albumin	7,788	-62	.02
MELD 3.0 without albumin	7,814	-36	.12

Only MELD 3.0 with albumin produced a significant decrease in the predicted number of waitlist deaths when compared to MELD Na

MELD 3.0 impact modeled separately by Gastroenterology paper authors and SRTR.

SRTR LSAM Modeling Results

MELD Model	Transplant	Transplant	Waitlist	Waitlist Mortality	2 Year Post-Tx
	Rate	Count	Mortality Rate	Count	Mortality
MELD Na: Female	38.8	2059	8.8	468	17.2
	(38,40.2)	(2021,2144)	(8.5 <i>,</i> 9.4)	(449,492)	(15.7,18.1)
MELD Na: Male	42.3	3751	8.9	787	15.9
	(41.2,44)	(3687,3864)	(8.5 <i>,</i> 9.2)	(758,814)	(15.2,17.1)
MELD 3.0 with	41.2	2170	8.7	458	17.2
albumin: Female	(39.6,41.8)	(2100,2216)	(8.1,9.2)	(426,481)	(15.3,18.5)
MELD 3.0 with	40.8	3635	9	798	16.2
albumin: Male	(40.3,41.6)	(3596,3681)	(8.7,9.5)	(774,851)	(15.4,17)

- eGFR vs. Creatinine:
 - Public comment proposal would require race-neutral eGFR calculations
 - Newer, race-neutral eGFR models, like cystatin-C, are not widely-available
- Sex vs. Height:
 - Impact of sex is larger and more consistent than height
 - Sex more correlated with mortality; height more correlated to access to transplant
- Albumin vs. No Albumin:
 - MELD 3.0 with albumin does better job of predicting mortality risk
 - Only MELD 3.0 with albumin resulted in statistically significant reduction in waitlist mortality

As creatinine increases, albumin is given less relative weight
 PTN ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK

- Adolescent candidates (age 12-17) will utilize MELD 3.0 but both male and female candidates will receive 1.33 "female" points
 - No evidence to suggest a sex-based disparity exists for adolescent candidates
 - Providing 1.33 "female" points to both male and female adolescent candidates ensures no unintended disparity is introduced for this group

- Data Collection Changes:
 - OPTN collects "birth sex"
 - Data collection will be updated to allow transplant programs to report a candidate's current sex when it differs from his or her birth sex

Rationale: MELD 3.0

- Improved ability to predict waitlist mortality
- Reduce sex-based disparity in liver allocation
- Clinical input of Committee members and subject matter experts

Member Actions

- Transplant programs will need to:
 - Inform candidates of any potential changes in their MELD score
 - Be aware of any changes to lab updates schedules as a result of new scores
 - Submit albumin values for all MELD candidates
 - Provide candidate's current sex if different than sex at time of birth

PELD Cr, Status 1A, Status 1B

OPTN ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK

- PELD Cr Overview:
 - Adds creatinine variable as measure of renal function
 - Updates parameters for current variables (albumin, bilirubin, INR)
 - Includes continuous variables for age and growth failure instead of categorical variables
 - Incorporates age-adjusted mortality factor to align with risk of mortality in the adult population

- Current PELD:
 - Calculated using objective laboratory values and predicts likelihood of 90day mortality for pediatric waitlist candidates (age less than 12)
 - Not updated since it was developed in 2000
 - Current PELD under predicts waitlist mortality risk by as much as 17%
 - Almost two-thirds of pediatric candidates listed with an exception score
 - Categorical growth failure variable creates "growth failure gap" where candidates with growth failure inappropriately lose six to seven PELD points
 - No measure of renal function

	If the value is:	Then the value's contribution to PELD is:
Candidate Age	<1	-0.1967 * 1
(fractional calendar year)	1 to 5.5	-0.1967 * age at the time of most recent lab reported for use in the PELD score (fractional calendar year)
	> 5.5 and < 12	-0.1967 * 5.5
Albumin (g/ <u>dL</u>)	1 to 1.9	-1.842 * In(albumin)
	≥1.9	-1.842 * (n(1.9)
Total bilirubin (mg/dL)	1 to 4	0.7854 * In(bilirubin) + 0.3434 * In(4)
	> 4 to 40	0.7854 * In(4) + 0.3434 * In(bilirubin)
	>40	0.7854 * In(4) + 0.3434 * In(40)
INR	1 to 2	1.981 * ln(INR) + 0.7298 * ln(2)
	> 2 to 10	1.981 * ln(2) + 0.7298 * ln(INR)
	>10	1.981 * ln(2) + 0.7298 * ln(10)
Minimum of CDC	<-5.0	-0.1807 * (-5)
height or weight Z- score	-5.0 to -2.1	-0.1807 * (minimum z-score)
	>-2.1	-0.1807 * (-2.1)
Creatinine (mg/dL)	< 0.2	1.453 * ln(0.2)
	0.2 to 1.3	1.453 * In(creatinine)
	≥ 1.3	1.453 * In(1.3)

PELD Cr = (sum of all terms + 1.5287) x 10 + 2.82

- PELD Cr better predicts waitlist mortality risk when compared to PELD:
 - PELD Cr C-statistic: 0.909
 - PELD C-statistic: 0.842
- Age and growth failure converted to continuous variables to address "growth failure gap"
- Creatinine incorporated to capture renal function
- 2.82 points added to account for age-adjusted mortality

Age-adjusted mortality:

OPTN ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK

Proposal: Status 1A

 Current policy does not reflect that diagnosing encephalopathy in young children is difficult and may be unreliable

Current Policy	Proposed Policy
Fulminant liver failure, defined as the onset of	Fulminant liver failure AND candidate either has:
hepatic encephalopathy within 56 days of the	 INR greater than or equal to 1.5 and less
first signs or symptoms of liver disease AND has	than 2.0 and a diagnosis of hepatic
an INR greater than 2.0	encephalopathy within 56 days of the
	first signs for symptoms of liver disease
	 INR greater than or equal to 2.0

Proposal: Status 1B

- Proposed changes:
 - MELD/PELD threshold for candidates with chronic liver disease
 - Gastro-intestinal (GI) bleeding threshold for candidates with chronic liver disease
 - Glasgow Coma Score (GCS) criteria for candidates with chronic liver disease
 - Sorting of candidates within Status 1B classifications

Proposal: Status 1B Criteria for Chronic Liver Disease

• MELD/PELD 25 Threshold:

- Liver-intestine candidates automatically get 23 points
- Most common reason that liver-alone candidate are listed as Status 1B by exception is because the candidate does not have a calculated MELD or PELD greater than 25; Most (72%) exceptions approved
- Update GI bleeding threshold to match definition of persistent mild shock or moderate shock for liver-alone candidates with chronic liver disease
- GCS criterion is not clinically relevant and rarely used for Status 1B listing

Proposal: Status 1B

- Blood type points:
 - Identical: 10 points
 - Compatible: 5 points
 - Incompatible: 0 points
- Waiting time points:
 - Candidate with most waiting time at Status 1B: 10 points
 - Fraction of 10 points divided among the remaining status 1B candidates within each classification, based on the potential recipient's total waiting time

Proposal: Status 1B

 Prioritize candidates with chronic liver disease by assigning diagnosis points:

Diagnosis	Points
Chronic liver disease (liver-	15 points
alone and liver intestine)	
Tumor	5 points
Metabolic Disease	0 points
Other	0 points

Rationale

	PELD Cr:	Status 1A/1B:
•	Improved ability to predict	Clinical input of Committee
	waitlist mortality for pediatric	members and subject matter
	candidates	experts
•	Clinical input of Committee	OPTN data
	members and subject matter	• Aligning policy with updated
	experts	clinical guidelines

Member Actions

- Transplant programs will need to:
 - Inform candidates of any potential changes in their PELD score
 - Be aware of any changes to lab updates schedules as a result of new scores
 - Submit creatinine values for all PELD candidates

What do you think?

- Should MELD 3.0 include albumin?
- How should adolescent candidates be handled under the new scoring system?
- Do you support removing the MELD/PELD 25 threshold for Status 1B?
- Do you support the number of points assigned for each diagnosis within Status 1B?