Update on the Continuous Distribution of Organs Project

OPTN Lung Transplantation Committee
Purpose of Request for Feedback

- Update the community on the progress to date
- Seek your input through a new prioritization exercise
- Request for Feedback ≠ Policy Proposal
- We need your input to help form the proposal
Request for Feedback

- Summarizes the attributes considered by the Lung Committee
- Outlines how these attributes align with NOTA and the Final Rule
- Explains how work to date will influence the future conversion of other organs to continuous distribution
- Provides an overview of the policy development approach
- Seeks community feedback via a prioritization exercise
Rationale

- Dissolve hard boundaries that create inequities. Examples:
 - Candidate biology
 - Distance from donor hospital

- Consider multiple patient attributes all at once through a composite allocation score instead of within categories by sequence
Overview of the Composite Allocation Score

<table>
<thead>
<tr>
<th>Goals</th>
<th>Attributes</th>
<th>Medical urgency</th>
<th>Post-transplant survival</th>
<th>Candidate biology</th>
<th>Patient access</th>
<th>Placement efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritize sickest candidates first to reduce waiting list mortality.</td>
<td>1 year survival without transplant</td>
<td>Prioritize candidates who are expected to survive for at least one year after receiving a transplant.</td>
<td>1 year survival after transplant</td>
<td>Increase transplant opportunities for patients who are medically harder to match.</td>
<td>Increase transplant access for patients under the age of 18 and patients who previously donated an organ or part of an organ.</td>
<td>Consider resource requirements required to match, transport, & transplant an organ.</td>
</tr>
<tr>
<td>Increase transplant opportunities for patients who are medically harder to match.</td>
<td>Blood type</td>
<td></td>
<td>Blood type</td>
<td>Sensitization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase transplant access for patients under the age of 18 and patients who previously donated an organ or part of an organ.</td>
<td>Candidate height</td>
<td></td>
<td>Candidate height</td>
<td>Prior living donor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider resource requirements required to match, transport, & transplant an organ.</td>
<td>Prior living donor</td>
<td></td>
<td></td>
<td>Pediatric age group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Travel efficiency</td>
<td></td>
<td></td>
<td>Proximity efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proximity efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instead of a classification, candidates will be assigned a composite allocation score made up of multiple patient attributes.

These attributes support the following goals:

- Medical urgency
- Post-transplant survival
- Candidate biology
- Patient access
- Placement efficiency

Patient’s Composite Allocation Score
Current State vs. Future State

<table>
<thead>
<tr>
<th>Order</th>
<th>Classification</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High urgency, high compatibility</td>
<td>250 nm</td>
</tr>
<tr>
<td>2</td>
<td>High urgency, medium compatibility</td>
<td>250 nm</td>
</tr>
<tr>
<td>3</td>
<td>Pediatric, high urgency, high compatibility</td>
<td>250 nm</td>
</tr>
<tr>
<td>4</td>
<td>Pediatric, high urgency, medium compatibility</td>
<td>250 nm</td>
</tr>
<tr>
<td>5</td>
<td>Medium urgency, high compatibility</td>
<td>500 nm</td>
</tr>
</tbody>
</table>

The diagram illustrates the amount of points for different candidates based on various criteria:
- **Blue**: 1 year survival without transplant
- **Green**: Pediatric age group
- **Orange**: Blood type
- **Yellow**: Sensitization
- **Purple**: Prior living donor
- **Teal**: Placement efficiency

Candidate A has the highest points, indicating a strong match for the criteria listed.
Policy Development Approach

Identify attributes ➔ Categorize attributes ➔ Convert attributes into points ➔ Prioritize attributes against each other ➔ Build baseline (Revealed Preference) ➔ Gap analysis ➔ Committee chooses option(s)

Build framework ➔ Modeling ➔ Public comment on policy proposal ➔ Board ➔ Implementation
Milestones: Continuous Distribution of Lungs

- **2019**
 - Began work: January
 - Concept paper: August - October

- **2020**
 - Request for Feedback & Prioritization Exercise: August - October
 - Lung Allocation Score Update: Public Comment: August - October

- **2021**
 - Policy Proposal: Public Comment: August - October
 - OPTN Board of Directors: December

- **2022**
 - Implementation
Feedback Requested: Placement Efficiency

- The Committee is considering how to incorporate placement efficiency

- Proposed attributes:
 - Travel efficiency (cost)
 - Assigns points based on relative cost of transporting lungs over distance
 - Proximity efficiency (distance)
 - Assigns points based on efficiencies associated with proximity

- Are there any other attributes related to placement efficiency that you recommend?
Feedback Requested

- Is there anything else that the OPTN can do to better help you understand how this proposal is being developed?
- Do you agree with the Committee’s recommended attributes?
- Sign up to participate in the prioritization exercise: https://bit.ly/OPTNlung

Please introduce yourself when you speak
Prioritization Exercise

Which is more important with respect to the Portfolio Goal?

- Decrease Waitlist Deaths
- Improve Post Transplant Survival

This goal contains attributes related to how close to death a candidate is without receiving a transplant. Specifically, it includes their Lung Allo...More

This goal contains attributes related to a candidate's likelihood of survival after receiving a transplant. Specifically, it includes their Lung All...More

- EXTREME
- VERY STRONG
- STRONG
- MODERATE
- EQUAL
- MODERATE
- STRONG
- VERY STRONG
- EXTREME

Increase Waitlist Deaths is Strongly More Important than Improve Post Transplant Survival.

We need your input!

Deadline: October 1, 2020
Related Proposal: Updated Cohort for Calculation of the LAS

- This proposal was also released for public comment this cycle and is on the non-discussion agenda

- Purpose: Improve the accuracy of the lung allocation score (LAS) in ranking candidates

- LAS makes up the medical utility component of the composite allocation score in continuous distribution

- To read the proposal, watch a video, and comment, go to: https://optn.transplant.hrsa.gov/governance/public-comment/