Briefing to the OPTN Board of Directors on Updated Cohort for Calculation of the Lung Allocation Score (LAS)

OPTN Lung Transplantation Committee

Prepared by: Elizabeth Miller UNOS Policy and Community Relations Department

Contents

2
3
3
5
9
11
11
13
13
14

Updated Cohort for Calculation of the Lung Allocation Score (LAS)

Affected Policies:	10.1.E: LAS Values and Clinical Data Update Schedule for Candidates at Least 12 Years Old 10.1.F: The LAS Calculation
	10.1.F.iii: Bilirubin in the LAS 10.1.F.iv: Creatinine in the LAS 10.5 Probability Data Used in the LAS Calculation
<i>Sponsoring Committee: Public Comment Period: Board of Directors Date:</i>	Lung Transplantation August 4, 2020 – October 1, 2020 December 7, 2020

Executive Summary

The Lung Allocation Score (LAS) is a model based on significant variables that are predictive of a candidate's expected 1-year waitlist survival and expected 1-year post-transplant survival. It is used in lung allocation to rank candidates. A higher expected waitlist mortality and lower expected post-transplant mortality corresponds to a higher LAS. The coefficients used to provide weight to relevant values in order to calculate LAS are based on analysis of transplant candidates and recipients performed by the Scientific Registry of Transplant Recipients (SRTR). The values that are currently used in the LAS calculation were calculated based on a patient cohort of candidates and recipients ending in 2008.¹ This proposal replaces those values with values based on an updated analysis using a cohort ending in 2018.

During the validation of the new results, the Lung Transplantation Committee (Committee) determined that there were some variables that were included in the calculation that did not add to the ability of the model to predict survival for the newer cohort of patients. For some, the resulting coefficient for those variables would result in an impact that is contrary to medical experience. Accordingly, several variables are proposed for removal from the calculation. The data on these values will still be collected in case they are found to be predictive in future updates to the LAS, but those values will not be used in the LAS calculation at this time.

¹ OPTN Briefing Paper, Proposal to Revise the Lung Allocation Score (LAS) System. 2012.

Background

The LAS equation was last updated in 2012, based on a cohort of candidates listed for transplant between September 1, 2006 and September 30, 2008 and a cohort of recipients transplanted between May 4, 2005 and September 30, 2008.² At that time, the OPTN removed percent predicted forced vital capacity (FVC) for certain candidates, and added the following variables to the LAS calculation:

- Cardiac index
- Central venous pressure (CVP)
- Creatinine
- Six-minute-walk-distance
- Increase in creatinine of at least 150%
- Oxygen needed at rest

As part of the same change, several other variables used in the LAS calculation were modified, and all of the coefficients were updated to better reflect the most recent state at that point. Since that time, the LAS calculation has not been updated to reflect an updated patient cohort. At this point, the cohort is more than 12 years old.

The Committee is currently developing other modifications to lung allocation as part of its continuous distribution project.³ In order to ensure that the composite allocation score is based on the most recent data, the Committee proposes this update to the LAS cohort first.

The Committee is also planning to improve the LAS calculation further as part of the next phase of these updates, and expects to add new data elements to the survival calculations to improve their predictive capabilities. Once those new elements are included, the Committee will evaluate the overall predictive ability of the new elements; currently included variables; and other information that is available, including the variables removed in this proposal, to consider which combination is the most predictive most when evaluated together.

Purpose

This proposal addresses the need for an update to the cohort of candidates and recipients used to determine a candidate's LAS.

The Committee submits the following proposal under the authority of the OPTN Final Rule, which states "The OPTN Board of Directors shall be responsible for developing...policies for the equitable allocation for cadaveric organs."⁴

Sentiment from Public Comment

This proposal was issued for public comment from August 4, 2020 to October 1, 2020. The feedback is described below. The Committee specifically requested feedback on whether the appropriate variables being removed from the calculation, whether there was a need for transition procedures, and whether

² OPTN Briefing Paper, *Proposal to Revise the Lung allocation Score (LAS) System*. 2012.

³ OPTN Request for Feedback, Update on the Continuous Distribution of Organs Project.

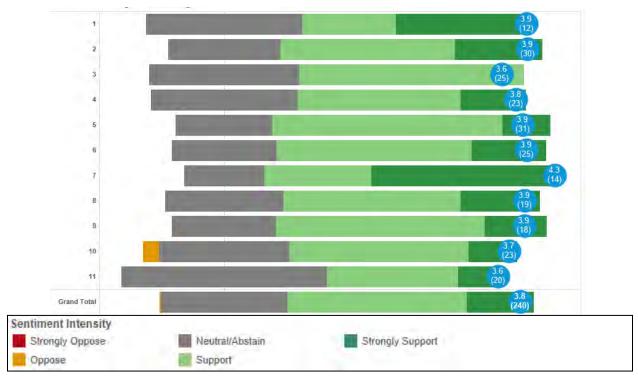
https://optn.transplant.hrsa.gov/media/3932/continuous_distribution_lungs_concept_paper_pc.pdf.

⁴ 42 CFR §121.4(a)(1).

implementation of this proposal be before or concurrent with the implementation of Continuous Distribution changes.

Sentiment is collected along a 5-point Likert scale from strongly oppose to strongly support (1-5) during public comment. Generally, public comment sentiment was supportive of this proposal. Below are graphics that illustrate the sentiment received through public comment.

Figure 1 shows that the sentiment received at regional meetings was generally supportive.



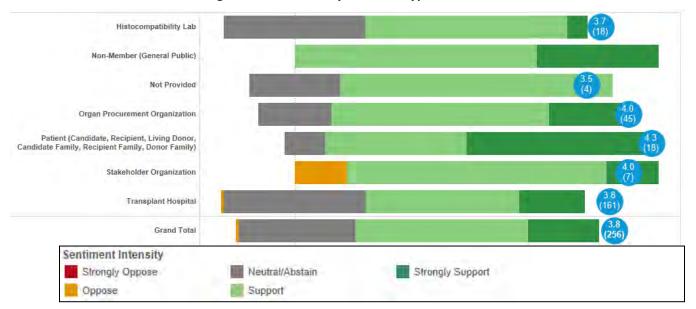

Figure 1: Sentiment at Regional Meetings⁵

Figure 2 shows the sentiment received from all public comment respondents (whether submitted during regional meetings, online, or by email) by their stated member type. Again, there was overall support for the concept among all member types.

⁵ This chart shows the sentiment for the public comment proposal. Sentiment is reported by the participant using a 5-point Likert scale (1-5 representing Strongly Oppose to Strongly Support). Sentiment for regional meetings only includes attendees at that regional meeting. Region 6 uses the average score for each institution. The circles after each bar indicate the average sentiment score and the number of participants is in the parentheses.

Figure 2: Sentiment by Member Type⁶

Proposal for Board Consideration

This proposal updates the variables, coefficients, and probabilities used in the LAS calculation. The changes reflect the use of an updated cohort of more recent lung transplant candidates and recipients, as well as refining the variables to those that are most predictive within the models for waitlist mortality and post-transplant mortality. Although variables may be predictive when used in isolation, the predictive value of an individual element may be smaller or greater when analyzed as a group, as in the way the LAS variables are used.

Updated Cohort

The Committee submitted a request to the Scientific Registry of Transplant Recipients (SRTR) to refit the LAS waitlist and post-transplant models using a more contemporary cohort of candidates and recipients on September 23, 2019. The Committee first reviewed the results of that analysis (Refit 1) on a conference call in December 2019.⁷ Over the ensuing discussions, the Committee requested refinements to the model.⁸ The results of the final revised modeling request (Refit 2) are used in this proposal.

The Committee proposes updated coefficients and probabilities based on the updated cohorts of lung candidates and recipients from March 1, 2015 through March 31, 2018 to predict death within 1 year on the waitlist and death within 1 year post-transplant.⁹ This will make the population basis for the LAS calculation more recent and more accurately reflective of the current state. The new values for the coefficients and probabilities reflect this updated cohort.

⁶ This chart shows the sentiment for the public comment proposal. Sentiment is reported by the participant using a 5-point Likert scale (1-5 representing Strongly Oppose to Strongly Support). The circles after each bar indicate the average sentiment score and the number of participants is in the parentheses.

⁷ SRTR, Analysis Report LU2019_02, November 26, 2019.

⁸ Ibid; SRTR Analysis Report LU2020_03, June 8, 2020.

⁹ The Refit does not include candidates and recipients less 12 years old.

Removed Variables

As a result of review of the modeling results in Refit 2, the Committee chose to remove several variables. These variables are recommended for removal based on the fact that there is not sufficient confidence that the values add to the predictive ability of the LAS at this time. Removing these variables results in minimal impact on candidates.¹⁰ Although these variables may be predictive when analyzed alone, when incorporated in the larger analysis they do not add to the predictive value of the model as a whole.¹¹ This could be because their impact is already accounted for in other variables.

Figure 3 shows the impact of the proposed changes on individual candidates based on Refit 2. If there was no change in position on a match run between the current system and the Refit, the blue dots would all be directly on the diagonal black line. The grouping close to that line suggests that the change will impact candidates' relative rankings, but few candidates that would experience extreme changes. .

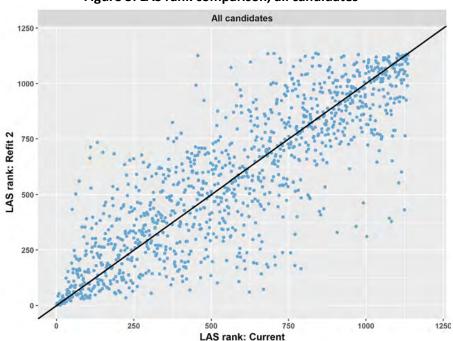


Figure 3: LAS rank comparison, all candidates¹²

The Committee is not proposing changes to the data collected. Continuing to collect the underlying data on these variables will allow continued evaluation and potential inclusion in future updates.

¹⁰ SRTR Analysis Report LU2020_03, June 8, 2020

¹¹ Ibid.

¹² Ibid.

Not predictive due to small numbers

Several of the variables only applied to a small number of candidates or recipients. There was not enough data to be confident that these variables were predictive of 1 year post-transplant or 1 year waitlist mortality due to small numbers of candidates in each group – fewer than 1% of the cohort for each¹³.

The following values were poorly estimated due to small populations in the new cohort.¹⁴

- Waitlist:
 - Obliterative Bronchiolitis (72 candidates)
 - Lymphangioleiomyomatosis (28 candidates)
 - Eisenmenger's (2 candidates)
 - Bilirubin increase >50%, group B (1 candidate)
- Post-transplant:
 - Lymphangioleiomyomatosis (27 recipients)
 - Creatinine increase > 150% (3 recipients)
 - Eisenmenger's syndrome (1 recipient)

Accordingly, the Committee proposes removing these variables.

Reversed sign

In the Refits, the coefficients associated with several of the variables reversed sign; the variables either currently have a positive value but have a negative value under the new analysis or the reverse – the variables are currently negative, but are positive under the Refit analysis. A positive sign indicates a positive correlation with mortality (ie. a candidate with that value is more likely to die within 1 year on the waitlist or within 1-year post-transplant than someone with otherwise similar values). A negative sign indicates a negative correlation with mortality (ie. a candidate with that value is less likely to die within 1 year on the waitlist or 1-year post-transplant than someone with otherwise similar values).

A change in sign alone is not necessarily a reason to exclude a variable, but merely reflects one way that the coefficients can change with the updated cohort. The change in direction caused the Committee to reassess the variables in light of the need to update the least beneficial values in conjunction with a change.¹⁵ In that reassessment, the Committee realized that none of the variables that reversed sign were predictive in the current cohort, so they were removed.

		•	
Variable	Current Estimate	Refit Estimate	Refit P value
Pulmonary fibrosis, other	-0.21	0.21	0.2093
Diabetes	0.47	-0.04	0.7688

¹³ There were 7,928 total candidates in the waitlist model and 7,045 total recipients in the post-transplant model. SRTR *Analysis Report LU2020_03*, June 8, 2020.

¹⁴ Because the cohorts for waitlist and post-transplant mortality are different groups, the number of candidates in each group are likely to be different for each, even when the same variable is considered in both. Therefore, a small population for a variable used in waitlist may not necessarily translate to a small population for post-transplant, and vice versa. SRTR *Analysis Report LU2020_03*, June 8, 2020.

¹⁵ "If values for certain covariates are missing, expired, or below the threshold as defined by Table 10-1, then the LAS calculation will substitute normal or least beneficial values to calculate the candidate's LAS. A normal value is one that a healthy individual is likely to exhibit. A least beneficial value is one that will calculate the lowest LAS for a candidate." *OPTN Policy 10.1.E: LAS Values and Clinical Data Update Schedule for Candidates at Least 12 Years Old.* ¹⁶ SRTR *Analysis Report LU2020_03*, June 8, 2020.

Variable	Current Estimate	Refit Estimate	Refit P value
FVC < 80% spline, group D	-0.18	0.00	0.9612
Cardiac index < 2 L/min/m2	0.54	-0.08	0.6970
CVP > 7mm Hg spline, group B	0.02	-0.02	0.6011

As seen in **Table 1** above, coefficients for five of the variables in the waitlist survival model changed sign. Each had a high p-value, well above .05 in the Refit, suggesting that the variables were not predictive.

In the waitlist model, the Committee proposes removing all of the variables that reversed sign except for pulmonary fibrosis. For pulmonary fibrosis alone, the Committee believed that the change could be consistent with the consensus of clinical experience and there was sufficient basis to retain the variable. For pulmonary fibrosis, both the current and the Refit values were fairly close, although different signs.

Variable	Current Estimate	Current P value	Refit Estimate	Refit P value
Pulmonary fibrosis, other	-0.072	0.6549	0.003	0.9845
Sarcoidosis, PA >30	-0.044	0.8575	0.436	0.0736
Sarcoidosis, PA <=30	-0.139	0.7019	0.980	<.0001
Functional status, no assistance	-0.190	0.1435	0.011	0.9490

Sarcoidosis with pulmonary arterial (PA) mean pressure greater than 30 mmHg, sarcoidosis with PA mean pressure less than or equal to 30 mmHg pulmonary fibrosis, and functional status all reversed sign from negative to positive in the post-transplant model. The Committee chose to remove pulmonary fibrosis and functional status because they are no longer predictive, with higher p-values in the Refit. The Committee chose to retain the sarcoidosis variables because they were both still predictive or potentially predictive of post-transplant mortality, shown by lower p-values, and were not inconsistent with medical expertise.

In the narratives submitted through public comment, respondents generally expressed support for updating the LAS calculation. After evaluating and considering the following themes from public comment, the Committee chose not to make any changes to the proposal.

Frequent Updates

Several of the responses encouraged the Lung Committee to continue to evaluate the need for changes on a more frequent basis and to consider adding new variables that are not currently considered. These comments support the Committee's plan to continue work on updating the LAS calculation by evaluating new variables that may need to be added to data collection to evaluate their ability to improve the predictive value of the LAS calculation. This phase of the project is just beginning, and the Lung Committee is planning to have the proposal ready within the next year so new data collection will be in place as the allocation system changes to continuous distribution. Additionally, the Lung Committee is committed to evaluating and updating the LAS calculation on a more frequent basis.

¹⁷ SRTR *Analysis Report LU2020_03*, June 8, 2020.

Survival

Several of the respondents also opined that 1-year was too short a time horizon for evaluating survival, and suggested 3 or 5 year survival metrics in the LAS instead. The Lung Committee was interested in a longer survival metric as well and discussed this option. At this time, the choice of cohort is affected by the changes to allocation that took effect November 24, 2017.¹⁸ Additionally, the Lung Committee was comfortable with continuing to use 1-year survival metrics based on data showing that 1-year survival is highly correlated with 3-year survival.¹⁹

Specific Populations

The response from the American Society of Transplantation (AST) indicated that the society was concerned about the possibility of the removal of cardiac index adversely affecting patients in diagnosis group B.²⁰ However, the proposed LAS changes reflect shifts in mortality risk of a recent cohort of patients. Another way to interpret the shift could be, "Groups B and C were getting too much advantage before, at the expense of sicker group D patients." The Lung Committee will evaluate the impact of the changes on this group to ensure it is able to react if the change results in inaccurate mortality predictions that disadvantage patients.

The response from the Cystic Fibrosis Foundation expressed concern with whether removing diabetes and forced vital capacity (FVC) would have an adverse impact on patients with cystic fibrosis who need a lung transplant. However, since 2016, FVC only affects candidates in diagnosis group D, so will not affect candidates listed with a diagnosis of cystic fibrosis, which would be in diagnosis group C. The Committee evaluated the impact of removing diabetes on candidates with a diagnosis in group C by comparing Refit 1, which included diabetes, and Refit 2, which did no. The changes appeared to impact candidates in diagnosis group C the least. Further, including diabetes with a negative coefficient would suggest that having diabetes makes a patient more likely to survive, which was not considered clinically logical.

There was also feedback in public comment requesting that the Lung Committee evaluate the changes and ensure that there are no unintended consequences that might disadvantage certain patients. The Lung Committee is committed to evaluating the changes on a routine basis, as outlined in *Policy Evaluation* below.

NOTA and Final Rule Analysis

The Committee submits the following proposal for consideration by the Board of Directors under the authority of the OPTN Final Rule, which requires that when developing policies for the equitable allocation of cadaveric organs, such policies must be developed "in accordance with §121.8," which requires that allocation policies "(1) Shall be based on sound medical judgment; (2) Shall seek to achieve

¹⁸ OPTN/UNOS Mini Brief, Broader Sharing of Adult Donor Lungs,

https://optn.transplant.hrsa.gov/media/2314/broader_sharing_lungs_20171124.pdf.

¹⁹ Final Analysis for Data Requests from the Lung Subcommittee of the OPTN Thoracic Committee Live Meeting March 2, 2010.

²⁰ Because a candidate's diagnosis has a bearing on their expected waitlist and post-transplant mortality, the diagnosis is included in the LAS calculation. The diagnoses are organized into four groups (A-D) of similar types of disease, and a different value is assigned for each of the groups. Certain diagnoses have more specific data available, and in those cases, the score receives a further adjustment that is specific to that diagnosis. *OPTN Policy 10.1.F The LAS Calculation*.

the best use of donated organs; (3) Shall preserve the ability of a transplant program to decline an offer of an organ or not to use the organ for the potential recipient in accordance with §121.7(b)(4)(d) and (e); (4) Shall be specific for each organ type or combination of organ types to be transplanted into a transplant candidate; (5) Shall be designed to avoid wasting organs, to avoid futile transplants, to promote patient access to transplantation, and to promote the efficient management of organ placement;...(8) Shall not be based on the candidate's place of residence or place of listing, except to the extent required by paragraphs (a)(1)-(5) of this section." This proposal will allow the OPTN to use the most relevant data in calculating LAS for lung allocation.

- Is based on sound medical judgment²¹ because it is an evidenced-based change relying on the following evidence:
 - Data from the SRTR showing the predicted impact of each variable on 1-year posttransplant survival and 1-year waitlist survival.
 - Data from the SRTR showing little impact on predictive ability of the model when removing the variables proposed to be removed.
 - Medical judgment regarding whether the variables that reversed signs are logically aligned with clinical observations
- Seeks to achieve the best use of donated organs²² by ensuring organs are allocated and transplanted according to medical urgency. This proposal allows for improved prediction of waitlist and post-transplant mortality to ensure that the most medically urgent, as determined by waitlist mortality, will receive organ offers sooner.
- Is designed to avoid futile transplants²³: This proposal should not result in transplanting patients that are unlikely to have good post-transplant outcomes. The proposal seeks to improve the calculation of the candidates' likelihood of post-transplant survival used for lung allocation.
- Is designed to...promote patient access to transplantation²⁴ by giving similarly situated candidates equitable opportunities to receive an organ offer. It improves the mortality predictions so that candidates with similar medical urgency are more likely to have similar LAS scores. The proposal adjusts the LAS scores across diagnosis groups to make sure that anyone assigned an LAS has an equitable opportunity for transplant based on their LAS.
- Is not based on the candidate's place of residence or place of listing, except to the extent required to achieve best use of organs, avoid futile transplants, and promote patient access to transplantation.²⁵ This proposal is not based on the candidate's place of residence or place of listing.

This proposal also preserves the ability of a transplant program to decline and offer or not use the organ for a potential recipient,²⁶ and it is specific to an organ type, in this case lung.²⁷

Although the proposal outlined in this briefing paper addresses certain aspects of the Final Rule listed above, the Committee does not expect impacts on the following aspects of the Final Rule:

²¹ 42 CFR §121.8(a)(1).
²² 42 CFR §121.8(a)(2).
²³ Ibid.
²⁴ Ibid.

²⁵ 42 CFR §121.8(a)(8).

²⁶ 42 CFR §121.8(a)(3).

²⁷ 42 CFR §121.8(a)(4).

- Is designed to avoid wasting organs²⁸
- Promotes the efficient management of organ placement²⁹

Alignment with OPTN Strategic Plan³⁰

Improve equity in access to transplants:

This proposal is focused primarily on improving equity in access to transplant by using the most accurate predictions of waitlist and post-transplant mortality to order candidates by medical urgency.

Implementation Considerations

Member and OPTN Operations

Operations affecting Transplant Hospitals

This proposal is not anticipated to affect the data collection associated with lung candidate listings, and is not anticipated to affect the operations of Transplant Hospitals.

Operations affecting Histocompatibility Laboratories

This proposal is not anticipated to affect the operations of Histocompatibility Laboratories.

Operations affecting Organ Procurement Organizations (OPOs)

This proposal is not anticipated to affect the operations of OPOs.

Operations affecting the OPTN

This proposal will require programming of changes to UNet[™]. The new calculation will be incorporated into programming.

/

Potential Impact on Select Patient Populations

Since the Committee is proposing removal of certain diagnoses, the Committee carefully evaulated the impact on the different diagnosis groups to determine whether to adopt transition procedures for candidates that may be treated "less favorably" under the modified LAS compared to the current LAS upon implementation.³¹ The diagnoses are grouped into diagnosis groups A-D. Most candidates are in diagnosis group D, and the next largest group is diagnosis group A.³²

^{28 42} CFR §121.8(a)(5).

²⁹ Ibid.

³⁰ For more information on the goals of the OPTN Strategic Plan, visit https://optn.transplant.hrsa.gov/governance/strategicplan/.

³¹ The Final Rule requires the OPTN to "consider whether to adopt transition procedures" whenever organ allocation policies are revised. *See* 42 C.F.R. § 121.8(d).

³² OPTN Final Report, *Monitoring of the Lung Allocation Change, 2 Year Report Removal of DSA as a Unit of Allocation*, February 12, 2020, https://optn.transplant.hrsa.gov/media/3661/item_25_thoracic_committee_20200212.pdf.

As seen in **Figure 4** below, most of the decreases in LAS rank occurred in diagnosis group A, with some increased access for group D candidates at lower-numbered ranks. The majority of increased access in group A was related to candidates beginning at lower ranks. The Committee was reassured by this information that the changes in rank were related to appropriately providing more access to candidates who are more medically urgent. In the event that the changes result in a specific candidate being unfairly disadvantaged, that candidate's transplant program retains the option to apply for an LAS score exception as outlined in *Policy 10.2.B Lung Candidates with Exceptional Cases*.

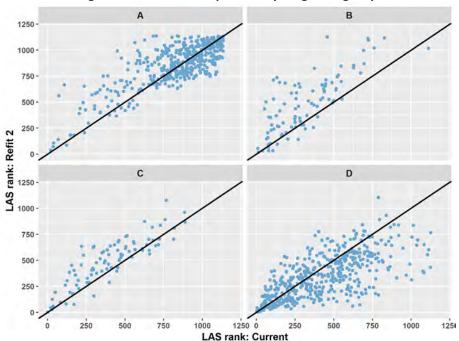


Figure 4: LAS rank comparison by diagnosis group³³

Although these changes will result in changes to individual candidates' LAS scores, the changes appear to correspond to the candidates' disease severity. As shown in **Figure 4** above, the candidates most likely to be treated "less favorably than they would have been treated under the previous policies" if these proposed policies are approved by the Board of Directors are those who are less medically urgent.³⁴ Additionally, In the event that the changes result in a specific candidate being unfairly disadvantaged, that candidate's transplant program retains the option to apply for an LAS score exception as outlined in *Policy 10.2.B Lung Candidates with Exceptional Cases.* Therefore, the Committee does not believe there is a need for a transition procedure.

Projected Fiscal Impact

Minimal or no fiscal impact to members.

Projected Impact on the OPTN

Preliminary estimates indicate that it will require less than 1,500 hours for IT programming and other implementation efforts.

³³ SRTR Analysis Report LU2020_03, June 8, 2020.

³⁴ SRTR Analysis Report LU2020_03, June 8, 2020.

Post-implementation Monitoring

Member Compliance

The Final Rule requires that allocation policies "include appropriate procedures to promote and review compliance including, to the extent appropriate, prospective and retrospective reviews of each transplant program's application of the policies to patients listed or proposed to be listed at the program."³⁵

The proposed language will not require new routine monitoring of OPTN members. Site surveyors will continue to review a sample of medical records, and any material incorporated into the medical record by reference, to verify that data reported through UNet is consistent with source documentation for all variables that can affect the LAS. Site surveyors will no longer review three data elements that are proposed to be removed from the LAS algorithm: central venous pressure (CVP), diabetes status, and forced vital capacity (FVC).

Policy Evaluation

The Final Rule requires that allocation policies "be reviewed periodically and revised as appropriate."³⁶ Monitoring reports will be delivered after implementation of this proposal at 6 months, 1 year and 2 years (or along the same time frame as implementation of Continuous Distribution of Lungs, whichever comes first) to the Lung Committee. Reports will focus on changes in the waiting list population and transplant recipient population and will encompass the following:

- Examine changes to the waiting list including the size, number of additions and/or removals, LAS, diagnosis groups, and population characteristics
- Examine changes in deceased donor lung transplants including recipient characteristics, LAS, and diagnosis groups
- Examine changes in waiting list and post transplant outcomes including waiting list mortality rate, transplant rate and post-transplant patient survival by diagnosis group and LAS group.

The OPTN and SRTR contractors will work with the committee to define any additional analyses requested for monitoring.

Conclusion

This proposal will update data used in the LAS calculation using a more recent cohort to achieve more equity in the allocation of lungs by improving the way waiting list and post-transplant mortality are calculated when they are used to determine medical urgency for lung allocation. As part of that update, the Committee proposes removing obliterative bronchiolitis, LAM, Eisenmenger syndrome, bilirubin increase of 50% or more for group B candidates, diabetes, cardiac index, CVP, and FVC from the equation used to determine expected waitlist survival in the LAS score. It also proposes removing LAM, Eisenmenger syndrome, pulmonary fibrosis, functional status and serum creatinine increase of 150% or more from the LAS expected post-transplant survival calculation. The proposal was supported in public comment, and the Committee made no changes following review of public comment feedback.

35 42 CFR §121.8(a)(7).

^{36 42} CFR §121.8(a)(6).

Policy Language

Proposed new language is underlined (<u>example</u>) and language that is proposed for removal is struck through (example). Heading numbers, table and figure captions, and cross-references affected by the numbering of these policies will be updated as necessary.

10.1.E LAS Values and Clinical Data Update Schedule for Candidates at Least 12 1 2 Years Old 3 When registering a candidate who is at least 12 years old for a lung transplant, or when 4 registering a candidate with an approved adolescent classification exception according to Policy 5 10.2.B: Lung Candidates with Exceptional Cases, transplant programs must report to the OPTN 6 Contractor clinical data corresponding with to the covariates shown in Table 10-3: Waiting List 7 Mortality Calculation: Covariates and Their Coefficients and Table 10-4: Post-Transplant Survival 8 Calculation, Covariates, and Their Coefficients. 9 10 The data reported at the time of the candidate's registration on the lung transplant waiting list must be six months old or less from the date of the candidate's registration date. The transplant 11 12 program must maintain source documentation for all laboratory values reported in the 13 candidate's medical chart. 14 15 Except as noted in Policy 10.1.G: Reporting Additional Data for Candidates with an LAS of 50 or 16 Higher, transplant programs must report to the OPTN Contractor LAS covariate clinical data for 17 every covariate in Table 10-3 and Table 10-4 for each candidate at least once in every six month period after the date of the candidate's initial registration or the LRB's approval of an adolescent 18 19 classification exception. The first six-month period begins six months from the date of the 20 candidate's initial registration, or, in the case of adolescent classification exceptions, six months 21 from the date of LRB approval, with a new six-month period occurring every six months 22 thereafter. 23 24 A covariate's value expires if the covariate's test date is six-months older than the most recent 25 six-month anniversary date. The LAS system considers actual values and approved estimated 26 values for pulmonary pressures to be valid until the transplant program updates them with new 27 actual values or new approved estimated values as described in Policy 10.2.B.iii: Estimated 28 Values Approved by the LRB. 29 30 Transplant programs may report a medically reasonable estimated value if a test needed to 31 obtain an actual value for a covariate variable cannot be performed due to the candidate's 32 medical condition. Before entering estimated values, programs must receive approval from the 33 LRB, which will determine whether the estimated values are appropriate according to *Policy* 34 10.2.B.iii: Estimated Values Approved by the LRB. Approved estimated values remain valid until 35 an updated actual value is reported for the covariate, or until the transplant program reports a 36 new, approved estimated value. 37 38 LAS covariate data obtained by heart catheterization does not need to be reported to the OPTN 39 Contractor every six months. For LAS covariate data that requires a heart catheterization, the 40 transplant program may determine the frequency of updating the data. However, if a transplant

program performs a heart catheterization test on the candidate during the six month interval,
then it must report the data to the OPTN Contractor.

If values for certain covariates are missing, expired, or below the threshold as defined by *Table 10-1*, then the LAS calculation will substitute normal or least beneficial values to calculate the candidate's LAS. A normal value is one that a healthy individual is likely to exhibit. A least beneficial value is one that will calculate the lowest LAS for a candidate. *Table 10-1* lists the normal and least beneficial values that will be substituted.

Table 10-1: Values Substituted for Missing	or Expired Actual Values in Calculating the LAS

If this covariate's value:	ls:	Then the LAS calculation will use this substituted value:
Bilirubin	Missing, expired, or less than 0.7 mg/dL	0.7 mg/dL
Body mass index (BMI)	Missing or expired	100 kg/m²
Cardiac index	Missing	3.0 L/min/m ²
Central venous pressure (CVP)	Missing or less than 5 mm Hg	5 mm Hg
Continuous mechanical ventilation	Missing or expired	No mechanical ventilation in the waiting list model
		Continuous mechanical ventilation while hospitalized in the post-transplant survival measure
Creatinine: serum	Missing or expired	 0.1 mg/dL in the waiting list model 40 mg/dL in the post-transplant survival measure for candidates at least 18 years old 0 mg/dL in the post-transplant survival measure for candidates less than 18 years old
Diabetes	Missing or expired	No diabetes
Forced vital capacity (FVC)	Missing or expired	150% for Diagnosis Group D
Functional status	Missing or expired	No assistance needed in the waiting list model
		Some or total assistance needed in the post-

If this covariate's value:	ls:	Then the LAS calculation will use this substituted value:
		transplant survival measure
Oxygen needed at rest	Missing or expired	No supplemental oxygen needed in the waiting list model
		26.33 L/min in the post- transplant survival measure
PCO ₂	Missing, expired, or less than 40 mm Hg	40 mm Hg
Pulmonary artery (PA) systolic pressure	Missing or less than 20 mm Hg	20 mm Hg
Six-minute-walk distance	Missing or expired	4,000 feet in the waiting list urgency measure
		0 feet in the post-transplant survival measure

10.1.F The LAS Calculation

The LAS calculation uses *all* of the following measures:

- Waiting List Urgency Measure, which is the expected number of days a candidate will live without a transplant during an additional year on the waiting list.
- Post-transplant Survival Measure, which is the expected number of days a candidate will live during the first year post-transplant.
- Transplant Benefit Measure, which is the difference between the Post-transplant Survival Measure and the Waiting List Urgency Measure.
- Raw Allocation Score, which is the difference between Transplant Benefit Measure and Waiting List Urgency Measure.

To determine a candidate's LAS, the Raw Allocation Score is normalized to a continuous scale of zero to 100.

The equation for the LAS calculation is:

69

70

71

$LAS = \frac{100 * [PTAUC - 2 * WLAUC + \frac{68}{730}]}{1095}$

Table 10-2: LAS Calculation Values

Where	Includes
$PTAUC = \sum_{k=0}^{364} S_{TX}(k)$	PTAUC = the area under the post-transplant survival probability curve during the first post-transplant year.
	β_1 = the coefficient for characteristic i from the waiting list measure, according to <i>Table 10-3:</i> Waiting List Mortality Calculation: Covariates and their Coefficients.
$S_{TX}(t) = S_{TX,0}(t)^{e^{\alpha_1 Y_1 + \alpha_2 Y_2 + + \alpha_q Y_q}}$	$S_{TX}(t)$ = the expected post-transplant survival probability at time t for an individual candidate.
	Y_i = the value of the j^{th} characteristic for an individual candidate
	α_i = the coefficient for characteristic j from the post- transplant survival measure, according to <i>Table 10-4:</i> <i>Post-Transplant Survival Calculation, Covariates, and</i> <i>Their Coefficients</i> .
$WLAUC = \sum_{k=0}^{364} S_{WL}(k)$	WLAUC = the area under the waiting list survival probability curve during the next year.
$S_{WL}(t) = S_{WL,0}(t)^{e^{\beta_{1}X_{1}+\beta_{2}X_{2}++\beta_{p}X_{p}}}$	S _{WL,0} (t) = the baseline waiting list survival probability at time t, according to <i>Table 10-11: Baseline Waiting</i> <i>List Survival (SWL(t)) Probability</i> .
	$S_{TX,0}(t)$ = the baseline post-transplant survival probability at time t, according to <i>Table 10-12</i> : Baseline Post-Transplant Survival ($S_{TX}(t)$) Probability.
	$S_{WL}(t)$ = the expected waiting list survival probability at time t for an individual candidate
	X_i = the value of the i th characteristic for an individual candidate.

72 73 74

75

Table 10-3 provides the covariates and their coefficients for the waiting list mortality calculation. See *Policy 10.1.F.i: Lung Disease Diagnosis Groups* for specific information on each diagnosis group.

Table 10-3: Waiting List Mortality Calculation: Covariates and their Coefficients

For this covariate:	The following coefficient is used in the LAS calculation:
1. Age (year)	0.0083990318885565 0.0281444188123287*age
2. Bilirubin (mg/dL) value with the	0.0431682188302477
most recent test date and time	0.15572123729572*(bilirubin – 1) if bilirubin is more than 1.0 mg/dL
	0 when bilirubin is 1.0 mg/dL or less
3. Bilirubin increase of at least 50%	1.4144058906830200 for Diagnosis Group B
	0 for Diagnosis Groups A, C, and D
4. Body mass index (BMI) (kg/m ²)	0.1261444133358100 0.10744133677215*(20 –
	BMI) for BMI less than 20 kg/m ²
	0 if BMI is at least 20 kg/m ²
	0.5435368888028200 if the cardiac index is less
5. Cardiac index prior to any exercise	than 2 L/min/m ²
	O if the cardiac index is at least 2 L/min/m ²
6. Central venous pressure (CVP)	0.0173841981251578*(CVP – 7) for CVP greater
(mm Hg) at rest, prior to any exercise	than 7 mm Hg (Diagnosis Group B only)
	O if less than or equal to 7 mm Hg for Diagnosis
	Group B
	O for candidates in Diagnosis Groups A, C, and D
7. Ventilation status if candidate is	1.6771121096052300 1.57618530736936 if
hospitalized	continuous mechanical ventilation needed
	0 if no continuous mechanical ventilation needed
8. Creatinine (serum) (mg/dL) with	0.5034346761960600 0.0996197163645*
the most recent test date and time	creatinine if candidate is at least 18 years old
	0 if candidate is less than 18 years old
9. Diabetes	0.4680254026735700 if diabetic
5. Diddetes	
	0 if not diabetic
10. Diagnosis Group A	0
11. Diagnosis Group B	1.5774243292137200 <u>1.26319338239175</u>
12. Diagnosis Group C	1.2313926484343600 <u>1.78024171092307</u>
13. Diagnosis Group D	0.6259577164157700 <u>1.51440083414275</u>

For this covariate:	The following coefficient is used in the LAS calculation:
14. Detailed diagnosis: Bronchiectasis (Diagnosis Group A only)	0.6680518055684700
15. Detailed diagnosis: Eisenmenger's syndrome (Diagnosis Group B only)	- 0.6278657824830000
16Detailed diagnosis: Lymphangioleiomyomatosis (Diagnosis Group A only)	-0.3162937838984600
17. Detailed Diagnosis: Obliterative bronchiolitis (not-retransplant) (Diagnosis Group D only)	0.4453284411081100
18. Detailed Diagnosis: Pulmonary fibrosis, other specify cause (Diagnosis Group D only)	- 0.2091170018125500
19. Detailed Diagnosis: Sarcoidosis with PA mean pressure greater than 30 mm Hg (Diagnosis Group D only)	- 0.4577749354638600 -0.64590852776042
20. Detailed Diagnosis: Sarcoidosis with PA mean pressure of 30 mm Hg or less (Diagnosis Group A only)	0.9330846239906700
21Forced vital capacity (FVC)	0.1829476350587400*(80 - FVC)/10 if FVC is less than 80% for Diagnosis Group D
	O if FVC is greater than or equal to 80% for Diagnosis Group D
	0 for candidates in Diagnosis Groups A, B, and C
22. Functional Status	-0.4471034284458400 -0.59790409246653 if no assistance needed with activities of daily living
	0 if some or total assistance needed with activities of daily living
23. Oxygen needed to maintain adequate oxygen saturation (88% or greater) at rest (L/min)	0.0213187586203456 0.0340531822566417*O2 for Diagnosis Group B
	0.1188479817592500 0.08232292818591*O2 for Diagnosis Groups A, C, and D
24. PCO ₂ (mm Hg): current	0.1104609835819100 0.12639905519026*PCO2/10 if PCO2 is at least 40 mm Hg

For this covariate:	The following coefficient is used in the LAS calculation:
25. PCO ₂ increase of at least 15%	0.2331149280428300 0.15556911866376 if PCO2 increase is at least 15%
	0 if PCO_2 increase is less than 15%
26. Pulmonary artery (PA) systolic pressure (10 mm Hg) at rest, prior to any exercise	0.4155116686114300 <u>0.55767046368853</u> *(PA systolic – 40)/10 for Diagnosis Group A if the PA systolic pressure is greater than 40 mm Hg
	0 for Diagnosis Group A if the PA systolic pressure is 40 mm Hg or less
	0.0462410402627318 0.1230478043299*PA systolic/10 for Diagnosis Groups B, C, and D
27. Six-minute-walk distance (feet) obtained while the candidate is receiving supplemental oxygen required to maintain an oxygen saturation of 88% or greater at rest. Increase in supplemental oxygen during this test is at the discretion of the center performing the test.	- 0.0844896372724000 <u>-0.09937981549564</u> *Six- minute-walk distance/100

81

82

Table 10-4: Post-Transplant Survival Calculation: Covariates and Their Coefficients

Table 10-4 lists the covariates and corresponding coefficients in the waiting list and posttransplant survival measures. See *Policy 10.1.F.i: Lung Disease Diagnosis Groups* for specific

information on each diagnosis group.

Fo	r this covariate:	The following is used in the LAS calculation:					
1.	Age (years)	0.0246579831271869 0.0208895939056676*(age-45) if candidate is greater than 45 years old					
2.	Creatinine (serum) at transplant (mg/dL) with the most recent data and time	0 if candidate is 45 years old or younger 0.0895569900508900 0.25451764981323*creatinine if candidate is at least 18 years old 0 if candidate is less than 18 years old					

For	this covariate:	The following is used in the LAS calculation:
3	-Creatinine increase of at least 150%	0.7708616024698100 if increase in creatinine is at least 150%, and the higher value determining this increase is at least 1 mg/dL
		O if increase in creatinine of 150% if the higher value determining this increase is less than 1 mg/dL
		0 if increase in creatinine less than 150%
4.	Cardiac index (L/min/m ²) at rest, prior to any exercise	0.3499381679822400 0.1448727551614 if less than 2 L/min/m ²
		0 if at least 2 L/min/m ²
5.	Ventilation status if candidate is	0.6094478988424900 0.33161555489537 if
	hospitalized	continuous mechanical ventilation needed
		0 if no continuous mechanical ventilation needed
6.	Diagnosis Group A	0
7.	Diagnosis Group B	0.6115547319209300
8.	Diagnosis Group C	0.3627014422464200 <u>0.23187885123342</u>
9.	Diagnosis Group D	0.4641392063023200
10.	Detailed diagnosis: Bronchiectasis (Diagnosis Group A only)	0.1889100379099400 0.12048575705296
11.	-Detailed diagnosis: Eisenmenger's syndrome (Diagnosis Group B only)	0.9146727886744700
12 .	Detailed diagnosis: Lymphangioleiomyomatosis (Diagnosis Group A only)	-1.5194416206749400
13.	Detailed diagnosis: Obliterative bronchiolitis (not-retransplant, Diagnosis Group D only)	-1.2050508750702600 -0.33402539276216
14 .	Detailed diagnosis: Pulmonary fibrosis, not idiopathic (Diagnosis Group D only)	-0.0723596761367600
15.	Detailed diagnosis: Sarcoidosis with PA mean pressure greater than 30 mm Hg (Diagnosis Group D only)	-0.0437880049066331 0.43537371336129
16.	Detailed diagnosis: Sarcoidosis with PA mean pressure of 30 mm Hg or less (Diagnosis Group A only)	- 0.1389363636019300

For this covariate:	The following is used in the LAS calculation:
 Oxygen needed to maintain adequate oxygen saturation (88% or greater) at rest (L/min) 	0.0747978926517300 0.0100383613234584*O2 for Diagnosis Group A
	0.0164276945879309 0.0093694370076423*O₂ for Diagnosis Groups B, C, and D
18. Functional Status	-0.1900086366785100 if no assistance needed with activities of daily living
	O if some or total assistance needed with activities of daily living
19. Six-minute-walk-distance (feet) obtained while candidate is receiving supplemental oxygen required to maintain an oxygen saturation of 88% or	0.0004594953809594 0.0001943695814883*(1200-Six-minute- walk distance)
greater at rest. Increase in supplemental oxygen during this test is at the discretion of the center performing the test.	0 if six-minute-distance-walked is at least 1,200 feet

84 85 86

83

See *Policy 10.5: Probability Data Used in the LAS Calculation* for *Tables 10-11* and *10-12* that provide data used in the LAS calculation.

87

102

103

10.1.F.iii Bilirubin in the LAS

- 88 The LAS calculation uses two measures of total bilirubin: 89 90 Current bilirubin (for all candidates) 91 Bilirubin Threshold Change (for diagnosis Group B only) 92 **Current Bilirubin** 93 94 Current bilirubin is the total bilirubin value with the most recent test date and time 95 reported to the OPTN Contractor. A current bilirubin value greater than 1.0 mg/dL 96 will impact candidate's LAS. 97 98 Bilirubin Threshold Change (Diagnosis Group B Only) 99 There are two Bilirubin threshold change calculations: 100 101 Bilirubin Threshold Change Calculation
 - Threshold Change Maintenance Calculation

Briefing Paper

104	Bilirubin Threshold Change Calculation
105	For candidates in diagnosis Group B, an increase in bilirubin that is at least 50%
106	impacts the candidate's LAS. The bilirubin threshold change calculation uses the
107	highest and lowest values of bilirubin as follows:
108	
109	 The test date and time of the lowest bilirubin value reported to the OPTN
110	Contractor used in the bilirubin threshold change calculation must be earlier
111	than the test date and time of the highest bilirubin value used in the bilirubin
112	threshold change calculation.
113	 The highest value must be at least 1.0 mg/dL.
114	 Test dates of these highest and lowest values cannot be more than six months
115	apart.
116	 The bilirubin threshold calculation can use an expired lowest value, but cannot
117	use an expired highest value.
118	 If a value is less than 0.7 mg/dL, the bilirubin threshold change calculation will
119	use the normal clinical value of 0.7 mg/dL.
120	
121	The equation for this bilirubin threshold change calculation is:
122	
123	Highest Bilirubin-Lowest Bilirubin
-	Lowest Bilirubin
124	
125	Threshold Change Maintenance Calculation
126	When a 50% or greater increase in bilirubin impacts a candidate's LAS, the LAS
127	threshold change maintenance calculation assesses whether to maintain that
128	impact. To maintain the impact of the bilirubin increase, the candidate's current
129	bilirubin value must be at least 1.0 mg/dL and at least 50% higher than the lowest
130	value used in the bilirubin threshold change calculation. The equation for the
131	threshold change maintenance calculation is:
132	Current Bilirubin-Lowest Bilirubin
133	
134	Lowest Bilirubin
135	
136	The threshold change maintenance calculation occurs either when the current
137	bilirubin value expires, according to <i>Policy 10.1.E: LAS Values and Clinical Data</i>
138	Update Schedule for Candidates at Least 12 Years Old, or a new current bilirubin
139	value is entered. For this calculation, the lowest and highest values that were used
140	in the bilirubin threshold change calculation, the lowest and highest values that were used
140	value can be the highest one that was used in the bilirubin threshold change
141	calculation. If a current bilirubin value expires, the candidate's LAS will no longer be
142	affected by the bilirubin threshold change.
143	anceled by the bill upin threshold endlige.
144	If a transplant bospital reports a new surrent bilightin value for a condidate who has
145	If a transplant hospital reports a new current bilirubin value for a candidate who has
	lost the impact from the bilirubin threshold change calculation, the LAS will perform
147	the threshold change maintenance calculation. If the new current bilirubin value is
148	at least 50% higher than the lowest value used in the bilirubin threshold change

149	calculation, the candidate's LAS will again be affected by the bilirubin threshold
150	change calculation.
151	
152	Normal Bilirubin Value
153	The normal clinical current bilirubin value is 0.7 mg/dL. If a current bilirubin value is
154	below 0.7 mg/dL, or if the current bilirubin value is missing or expired, the LAS
155	calculation will use the normal clinical current bilirubin value.
156	
157	10.1.F.iv Creatinine in the LAS
158	The LAS calculation uses two measures of creatinine:
159	
160	 Current creatinine (only for candidates who are at least 18 years old)
161	 Creatinine Threshold Change (for all candidates)
162	
163	Current Creatinine
164	Current creatinine is the serum creatinine value with the most recent test date and
165	time reported to the OPTN Contractor for candidates who are at least 18 years old.
166	
167	Creatinine Threshold Change Calculations
168	There are two creatinine threshold change calculations:
169	
170	1. Creatinine Threshold Change Calculation
171	2. Threshold Change Maintenance Calculation
172	
173	The Creatinine Threshold Change Calculation
174	An increase in creatinine that is at least 150% will impact a candidate's LAS. The
175	creatinine threshold change calculation uses the highest and lowest values of
176	creatinine as follows:
177	
178	The test date and time of the lowest creatinine value reported to the OPTN
179	Contractor used in the creatinine threshold change calculation must be earlier
180	than the test date and time of the highest creatinine value used in the
181	creatinine threshold change calculation.
182	 The highest value must be at least 1.0 mg/dL.
183	 Test dates of these highest and lowest values cannot be more than six months
184	apart.
185	 The creatinine threshold change calculation can use an expired lowest value,
186	but cannot use an expired highest value.
187	
188	The equation for this creatinine threshold change calculation is:
189	Highort Croatining Lowest Creatining
190	Highest Creatinine-Lowest Creatinine
191	Lowest Creatinine
191	
172	

193	The Threshold Change Maintenance Calculation
194	When a creatinine threshold change calculation impacts a candidate's LAS, the
195	threshold change maintenance calculation assesses whether to maintain that
196	impact. To maintain the impact of the increase in creatinine, the candidate's current
197	creatinine value must be at least 1.0 mg/dL and at least 150% higher than the
198	lowest value used in the creatinine threshold change calculation. The equation for
199	the threshold change maintenance calculation is:
200	
201	Current Creatinine-Lowest Creatinine
201	Lowest Creatinine
202	
203	If the current creatinine value expires or a new creatinine value is entered, then the
204	threshold change maintenance calculation will occur.
205	

10.5 Probability Data Used in the LAS Calculation

207

Table 10-11: Baseline Waiting List Survival (SWL(t)) Probability Where t=Time in Days

ŧ	S _{WL} (t)	ŧ	S _{wt} (t)	ŧ	Swi(t)	ŧ	Տաւ(t)	ŧ	S _{wt} (t)
0	1.0000000000	49	0.9966437334	98	0.9931596573	147	0.9905400510	196	0.9872991723
1	0.9999907157	50	0.9965433845	99	0.9930980163	<u>148</u>	0.9905400510	197	0.9872626749
2	0.9999254055	51	0.9965175429	100	0.9930607383	149	0.9905400510	198	0.9871552755
3	0.9998674170	52	0.9963972737	101	0.9930052489	150	0.9905400510	199	0.9871220338
4	0.9997455435	53	0.9963972737	<u>102</u>	0.9930052489	151	0.9905400510	200	0.9865302072
5	0.9995975343	5 4	0.9963631304	103	0.9929378277	<u>152</u>	0.9903840245	201	0.9865302072
6	0.9994989961	55	0.9963053385	104	0.9929378277	153	0.9903328361	202	0.9864801346
7	0.9993713802	56	0.9961914895	105	0.9928829296	15 4	0.9903328361	203	0.9859628001
8	0.9993046242	57	0.9961189511	106	0.9928829296	155	0.9903328361	20 4	0.9859256159
9	0.9992177050	58	0.9959421227	107	0.9928506946	156	0.9902446847	205	0.9859256159
10	0.9990851999	59	0.9959421227	108	0.9927619069	157	0.9902446847	206	0.9858198690
11	0.9989901794	60	0.9959092500	109	0.9927244496	158	0.9902446847	207	0.9858198690
12	0.9988873318	61	0.9959092500	110	0.9926433860	159	0.9901449203	208	0.9857415923
13	0.9988160788	62	0.9958731922	111	0.9926433860	160	0.9896887318	209	0.9857415923
14	0.9987295863	63	0.9958457969	112	0.9925624932	161	0.9896887318	210	0.9857415923
15	0.9986602768	6 4	0.9958457969	113	0.9920885646	162	0.9896520090	<u>211</u>	0.9857075131
16	0.9985875403	65	0.9956136053	114	0.9920640055	163	0.9895745634	212	0.9857075131
17	0.9984554393	66	0.9955529860	115	0.9920400127	164	0.9895745634	213	0.9855411680
18	0.9983616851	67	0.9955529860	116	0.9919966080	165	0.9889025189	21 4	0.9855411680
19	0.9982588046	68	0.9955529860	117	0.9919660469	166	0.9888730124	215	0.9855411680
20	0.9982200289	69	0.9955000986	118	0.9919399263	167	0.9888730124	216	0.9854501485
21	0.9980677506	70	0.9954789372	119	0.9919399263	168	0.9887838841	217	0.9854501485
<u>22</u>	0.9980357372	71	0.9953493820	120	0.9919399263	169	0.9887222824	<u>218</u>	0.9854501485
23	0.9979724590	72	0.9952934145	121	0.9915144847	170	0.9886945957	219	0.9853304718
2 4	0.9978684291	73	0.9951363273	122	0.9915144847	171	0.9886945957	220	0.9852652088
25	0.9977699910	74	0.9949654223	123	0.9915144847	<u>172</u>	0.9886945957	<u>221</u>	0.9852652088
26	0.9977420222	75	0.9948209678	124	0.9915144847	173	0.9886549235	222	0.9852652088
27	0.9976665328	76	0.9947736691	125	0.9914883902	174	0.9886549235	223	0.9852652088
28	0.9976255053	77	0.9947021905	126	0.9914618560	175	0.9886549235	22 4	0.9852652088
29	0.9975404117	78	0.9947021905	127	0.9913925084	176	0.9886246774	225	0.9846212073
30	0.9974725579	79	0.9946337898	128	0.9913069760	177	0.9885475245	226	0.9845486667
31	0.9973914097	80	0.9945649862	129	0.9913069760	178	0.9885475245	227	0.9845486667
<u>32</u>	0.9973268946	<u>81</u>	0.9945465023	130	0.9912697831	179	0.9885475245	<u>228</u>	0.9845486667
33	0.9972974521	82	0.9944645092	131	0.9912361687	180	0.9880619575	229	0.9845486667
3 4	0.9972743143	83	0.9944645092	132	0.9912361687	181	0.9880619575	230	0.9844886959
35	0.9972419197	8 4	0.9942969766	133	0.9910529687	<u>182</u>	0.9880619575	231	0.9844886959

ŧ	Sw⊾(t)	ŧ	S_{WL}(t)	ŧ	Swi(t)	ŧ	Swi(t)	ŧ	Sωι(t)
36	0.9972419197	85	0.9942969766	134	0.9910121623	183	0.9880212199	232	0.9843962284
37	0.9971814314	86	0.9942969766	135	0.9910121623	18 4	0.9879335450	233	0.9843236173
38	0.9971367830	87	0.9942969766	136	0.9909776544	185	0.9878851712	234	0.9842799561
39	0.9971209292	88	0.9941805902	137	0.9909776544	186	0.9878851712	235	0.9840794709
40	0.9971209292	89	0.9940771789	138	0.9909776544	<u>187</u>	0.9878851712	236	0.9840794709
41	0.9970189115	90	0.9940345018	<u>139</u>	0.9909355857	<u>188</u>	0.9878851712	<u>237</u>	0.9840145629
4 2	0.9969461979	91	0.9940082090	140	0.9909011142	189	0.9878560942	238	0.9840145629
43	0.9969159237	92	0.9938663826	<u>141</u>	0.9909011142	190	0.9878560942	<u>239</u>	0.9840145629
44	0.9968488001	93	0.9938313146	<u>142</u>	0.9908111395	<u>191</u>	0.9878560942	<u>240</u>	0.9840145629
4 5	0.9968488001	9 4	0.9938070978	143	0.9907387924	192	0.9878560942	241	0.9838347625
46	0.9968199961	95	0.9937145919	1 44	0.9905945464	193	0.9878560942	242	0.9838347625
47	0.9967799694	96	0.993307715 4	<u>145</u>	0.9905945464	<u>194</u>	0.9876077782	<u>243</u>	0.9837917116
48	0.9967313053	97	0.9932199214	146	0.9905400510	195	0.9873585581	<u>244</u>	0.9837534417

(Continued on next page)

Briefing Paper

Table 10-11: Baseline Waiting List Survival (SWL(t)) Probability Where t-Time in Days (Continued)									
ŧ	<u>Swi(t)</u>	ŧ	Swi(t)	ŧ	Swi(t)	ŧ	(t)	ŧ	Sωι(t)
245	0.9837534417	<u>269</u>	0.9829597020	<u>293</u>	0.9818267812	317	0.9802178676	341	0.9785965606
246	0.9837534417	270	0.9829597020	294	0.9818267812	318	0.9801289145	342	0.9785965606
<u>247</u>	0.9836972199	<u>271</u>	0.9827972342	<u>295</u>	0.9815730256	<u>319</u>	0.9801289145	343	0.9783012252
<u>248</u>	0.9836363251	<u>272</u>	0.9827972342	296	0.9813194319	320	0.9800157994	3 44	0.9782502701
<u>249</u>	0.9836363251	<u>273</u>	0.9827972342	<u>297</u>	0.9807747475	<u>321</u>	0.9800157994	345	0.9782502701
250	0.9836363251	274	0.9827972342	298	0.9807747475	322	0.9800157994	346	0.9782502701
251	0.9836363251	275	0.9827004206	<u>299</u>	0.9805186284	323	0.9797725024	347	0.9781167565
<u>252</u>	0.9832432776	276	0.9826027019	300	0.9803970706	32 4	0.9797725024	348	0.9780370471
253	0.9832432776	277	0.9826027019	301	0.9803970706	325	0.9796706377	349	0.9780370471
25 4	0.9832432776	<u>278</u>	0.9825107450	302	0.9803970706	326	0.9796706377	350	0.9780370471
255	0.9830967678	<u>279</u>	0.9824570403	303	0.9803970706	327	0.9791639481	351	0.9780370471
256	0.9830967678	280	0.9824570403	304	0.9803970706	328	0.9791639481	352	0.9779370209
257	0.9830967678	281	0.9824570403	305	0.9803970706	329	0.9791639481	353	0.9779370209
258	0.9830967678	<u>282</u>	0.9824128485	306	0.9803970706	330	0.9791639481	35 4	0.9779370209
259	0.9830967678	<u>283</u>	0.9823232942	307	0.9803390799	331	0.9791001516	355	0.9778553245
260	0.9830967678	284	0.9823232942	308	0.9803390799	332	0.9791001516	356	0.9778553245
261	0.9830967678	285	0.9823232942	309	0.9803390799	333	0.9789346942	357	0.9778553245
262	0.9830516708	286	0.9823232942	310	0.9803390799	33 4	0.9789346942	358	0.9777099092
263	0.9830516708	287	0.9823232942	311	0.9803390799	335	0.9788174060	359	0.9777099092
264	0.9830516708	288	0.9823232942	312	0.9803390799	336	0.9788174060	360	0.9768812539
265	0.9830516708	<u>289</u>	0.9823232942	313	0.9803390799	337	0.9788174060	361	0.9768812539
266	0.9830516708	290	0.9823232942	31 4	0.9803390799	338	0.9788174060	362	0.9768812539
267	0.9830516708	291	0.9819156574	315	0.9802178676	339	0.9788174060	363	0.9767085255
268	0.9829597020	<u>292</u>	0.9818779459	316	0.9802178676	340	0.9788174060	36 4	0.9767085255

213

t	SwL(t)	t	SwL(t)	t	SwL(t)	t	SwL(t)	t	SwL(t)
0	1.0000000000	49	0.9989492645	98	0.9980759414	147	0.9975146609	196	0.9969683767
1	0.9999975489	50	0.9989218966	99	0.9980462038	148	0.9975044749	197	0.9969683767
2	0.9999827070	51	0.9988856853	100	0.9980462038	149	0.9974993058	198	0.9969683767
3	0.9999561442	52	0.9988518113	101	0.9980357746	150	0.9974923101	199	0.9969587577
4	0.9999275553	53	0.9988426443	102	0.9980357746	151	0.9974768114	200	0.9969587577
5	0.9999018223	54	0.9988426443	103	0.9980261747	152	0.9974768114	201	0.9969454938
6	0.9998777824	<u>55</u>	0.9988209613	104	0.9979909233	153	0.9974554527	202	0.9968612819
<u>7</u>	0.9998561463	<u>56</u>	0.9988149888	<u>105</u>	0.9979796304	<u>154</u>	0.9974097005	203	0.9968383024
8	0.9998143795	<u>57</u>	0.9987715012	106	0.9979796304	155	0.9973345023	204	0.9968383024
9	<u>0.9997863737</u>	<u>58</u>	<u>0.9987338578</u>	<u>107</u>	<u>0.9979760272</u>	<u>156</u>	0.9973345023	205	0.9968247526
<u>10</u>	<u>0.9997696882</u>	<u>59</u>	<u>0.9987247079</u>	<u>108</u>	<u>0.9979646981</u>	<u>157</u>	0.9973270637	<u>206</u>	<u>0.9968185781</u>
<u>11</u>	0.9997397377	<u>60</u>	0.9987034482	<u>109</u>	0.9979440109	<u>158</u>	0.9973208018	<u>207</u>	0.9968185781
<u>12</u>	<u>0.9997045384</u>	<u>61</u>	<u>0.9987034482</u>	<u>110</u>	<u>0.9978768653</u>	<u>159</u>	<u>0.9973148013</u>	208	<u>0.9968185781</u>
<u>13</u>	<u>0.9996823002</u>	<u>62</u>	<u>0.9986649209</u>	<u>111</u>	<u>0.9978718005</u>	<u>160</u>	<u>0.9972940898</u>	<u>209</u>	<u>0.9968185781</u>
<u>14</u>	<u>0.9996498264</u>	<u>63</u>	<u>0.9986649209</u>	<u>112</u>	<u>0.9978279771</u>	<u>161</u>	<u>0.9972940898</u>	210	<u>0.9968097445</u>
<u>15</u>	<u>0.9996353431</u>	<u>64</u>	<u>0.9986596474</u>	<u>113</u>	<u>0.9978239640</u>	<u>162</u>	<u>0.9972940898</u>	<u>211</u>	<u>0.9967964069</u>
<u>16</u>	<u>0.9996288212</u>	<u>65</u>	<u>0.9986301115</u>	<u>114</u>	<u>0.9978239640</u>	<u>163</u>	<u>0.9972727684</u>	<u>212</u>	<u>0.9967166260</u>
<u>17</u>	<u>0.9996154867</u>	<u>66</u>	<u>0.9986166941</u>	<u>115</u>	<u>0.9978239640</u>	<u>164</u>	<u>0.9972727684</u>	<u>213</u>	<u>0.9966358744</u>
<u>18</u>	<u>0.9995970948</u>	<u>67</u>	<u>0.9985746371</u>	<u>116</u>	<u>0.9978239640</u>	<u>165</u>	<u>0.9972727684</u>	<u>214</u>	<u>0.9966212192</u>
<u>19</u>	<u>0.9995652300</u>	<u>68</u>	<u>0.9985695968</u>	<u>117</u>	<u>0.9978239640</u>	<u>166</u>	<u>0.9972688422</u>	<u>215</u>	<u>0.9966212192</u>
<u>20</u>	<u>0.9995271489</u>	<u>69</u>	<u>0.9985667636</u>	<u>118</u>	<u>0.9978239640</u>	<u>167</u>	<u>0.9972234233</u>	<u>216</u>	<u>0.9966144147</u>
<u>21</u>	<u>0.9995080982</u>	<u>70</u>	<u>0.9985563118</u>	<u>119</u>	<u>0.9977825323</u>	<u>168</u>	<u>0.9972234233</u>	217	<u>0.9966016656</u>
<u>22</u>	<u>0.9994934457</u>	<u>71</u>	<u>0.9985101367</u>	<u>120</u>	<u>0.9977771080</u>	<u>169</u>	<u>0.9972179105</u>	<u>218</u>	<u>0.9965791846</u>
<u>23</u>	<u>0.9994602264</u>	<u>72</u>	<u>0.9984938912</u>	<u>121</u>	<u>0.9977674724</u>	<u>170</u>	<u>0.9972086398</u>	<u>219</u>	<u>0.9965791846</u>
<u>24</u>	<u>0.9994302540</u>	<u>73</u>	<u>0.9984903590</u>	<u>122</u>	<u>0.9977606316</u>	<u>171</u>	<u>0.9972086398</u>	<u>220</u>	<u>0.9965744007</u>
<u>25</u>	<u>0.9994060375</u>	<u>74</u>	<u>0.9984305838</u>	<u>123</u>	<u>0.9977340449</u>	<u>172</u>	<u>0.9972086398</u>	<u>221</u>	<u>0.9965236975</u>
<u>26</u>	<u>0.9993816059</u>	<u>75</u>	<u>0.9984129085</u>	<u>124</u>	<u>0.9976558111</u>	<u>173</u>	<u>0.9972086398</u>	<u>222</u>	<u>0.9965110962</u>
<u>27</u>	<u>0.9993613122</u>	<u>76</u>	<u>0.9984027696</u>	<u>125</u>	<u>0.9976558111</u>	<u>174</u>	<u>0.9972086398</u>	<u>223</u>	<u>0.9964387358</u>
<u>28</u>	<u>0.9993350553</u>	<u>77</u>	<u>0.9983908074</u>	<u>126</u>	<u>0.9976504510</u>	<u>175</u>	<u>0.9971827158</u>	<u>224</u>	<u>0.9964387358</u>
<u>29</u>	<u>0.9993022038</u>	<u>78</u>	<u>0.9983908074</u>	<u>127</u>	<u>0.9976370243</u>	<u>176</u>	<u>0.9971692174</u>	<u>225</u>	<u>0.9964227617</u>
<u>30</u>	<u>0.9992938892</u>	<u>79</u>	<u>0.9983787271</u>	<u>128</u>	<u>0.9976101536</u>	<u>177</u>	<u>0.9971692174</u>	<u>226</u>	<u>0.9964227617</u>
<u>31</u>	<u>0.9992721423</u>	<u>80</u>	<u>0.9983696472</u>	<u>129</u>	<u>0.9976101536</u>	<u>178</u>	<u>0.9971692174</u>	<u>227</u>	<u>0.9964120372</u>
<u>32</u>	<u>0.9992622566</u>	<u>81</u>	<u>0.9983630336</u>	<u>130</u>	<u>0.9976101536</u>	<u>179</u>	<u>0.9971692174</u>	<u>228</u>	<u>0.9963875823</u>
<u>33</u>	<u>0.9992427448</u>	<u>82</u>	<u>0.9983467929</u>	<u>131</u>	<u>0.9975990034</u>	<u>180</u>	<u>0.9971603270</u>	<u>229</u>	<u>0.9963875823</u>
<u>34</u>	0.9992005080	<u>83</u>	<u>0.9983136954</u>	<u>132</u>	<u>0.9975835550</u>	<u>181</u>	<u>0.9971603270</u>	<u>230</u>	<u>0.9963684607</u>
<u>35</u>	<u>0.9991776739</u>	<u>84</u>	<u>0.9983064970</u>	<u>133</u>	0.9975766810	<u>182</u>	<u>0.9971320838</u>	<u>231</u>	<u>0.9963684607</u>
<u>36</u>	<u>0.9991551715</u>	<u>85</u>	<u>0.9982951177</u>	<u>134</u>	<u>0.9975701094</u>	<u>183</u>	<u>0.9971131145</u>	<u>232</u>	<u>0.9963684607</u>
<u>37</u>	0.9991302006	<u>86</u>	0.9982565537	<u>135</u>	0.9975701094	<u>184</u>	0.9971131145	<u>233</u>	0.9963684607
38	0.9991278479	<u>87</u>	0.9982441865	<u>136</u>	0.9975607830	<u>185</u>	0.9971091508	<u>234</u>	0.9963684607
<u>39</u>	0.9991028378	<u>88</u>	0.9982441865	<u>137</u>	0.9975520103	<u>186</u>	0.9970985061	<u>235</u>	0.9963684607
<u>40</u>	0.9990801777	<u>89</u>	0.9982441865	<u>138</u>	0.9975404803	<u>187</u>	0.9970985061	<u>236</u>	0.9963684607
<u>41</u>	0.9990600363	<u>90</u>	0.9982257230	<u>139</u>	0.9975404803	<u>188</u>	0.9970985061	237	0.9963684607
42	0.9990482109	<u>91</u>	0.9981791418	<u>140</u>	0.9975404803	<u>189</u>	0.9970985061	<u>238</u>	0.9963684607
<u>43</u>	0.9990482109	<u>92</u>	0.9981791418	<u>141</u>	0.9975404803	<u>190</u>	0.9970985061	<u>239</u>	0.9963684607
44	0.9990358743	<u>93</u>	0.9981714154	<u>142</u>	0.9975404803	<u>191</u>	0.9970985061	240	0.9963684607
<u>45</u>	0.9990358743	<u>94</u>	0.9981444359	<u>143</u>	0.9975344179	<u>192</u>	0.9970985061	241	0.9962582929
46	0.9990016655	<u>95</u>	0.9981313503	<u>144</u>	0.9975344179	<u>193</u>	0.9970985061	242	0.9962582929
<u>47</u>	0.9989778087	<u>96</u>	0.9981154417	<u>145</u>	0.9975344179	<u>194</u>	0.9970911735	243	0.9961947546
<u>48</u>	<u>0.9989665684</u>	<u>97</u>	<u>0.9981154417</u>	<u>146</u>	<u>0.9975298313</u>	<u>195</u>	<u>0.9970671621</u>	<u>244</u>	<u>0.9961947546</u>

214

215 216

Table 10-11: Baseline Waiting List Survival (SWL(t)) Probability Where t=Time in Days (Continued)

<u>t</u>	SwL(t)	<u>t</u>	<u>SwL(t)</u>	<u>t</u>	<u>SwL(t)</u>	<u>t</u>	<u>SwL(t)</u>	<u>t</u>	SwL(t)
<u>245</u>	<u>0.9961947546</u>	<u>269</u>	<u>0.9957784566</u>	<u>293</u>	<u>0.9955475237</u>	<u>317</u>	<u>0.9952281619</u>	<u>341</u>	<u>0.9949369873</u>
<u>246</u>	0.9960956354	<u>270</u>	<u>0.9957784566</u>	294	<u>0.9955054645</u>	<u>318</u>	0.9951666810	<u>342</u>	<u>0.9949369873</u>
<u>247</u>	<u>0.9960437794</u>	<u>271</u>	<u>0.9957784566</u>	<u>295</u>	<u>0.9954978576</u>	<u>319</u>	<u>0.9951314001</u>	<u>343</u>	<u>0.9949369873</u>

(Continued on next page)

t	<u>SwL(t)</u>	<u>t</u>	<u>SwL(t)</u>	t	<u>Swi(t)</u>	<u>t</u>	<u>Swi(t)</u>	<u>t</u>	SwL(t)
248	0.9960247257	<u>272</u>	0.9957784566	<u>296</u>	0.9954793243	<u>320</u>	<u>0.9951314001</u>	344	0.9948416999
249	0.9959880763	273	0.9957784566	297	0.9954639104	321	0.9951314001	345	0.9948416999
<u>250</u>	<u>0.9959742895</u>	<u>274</u>	<u>0.9957702527</u>	<u>298</u>	<u>0.9954392804</u>	<u>322</u>	<u>0.9951314001</u>	<u>346</u>	<u>0.9948416999</u>
<u>251</u>	<u>0.9959742895</u>	<u>275</u>	<u>0.9957639142</u>	<u>299</u>	<u>0.9954392804</u>	<u>323</u>	<u>0.9951314001</u>	<u>347</u>	<u>0.9947378061</u>
<u>252</u>	0.9959552359	<u>276</u>	0.9957410244	300	0.9954137179	<u>324</u>	0.9950798577	348	0.9946948263
<u>253</u>	<u>0.9959552359</u>	<u>277</u>	<u>0.9957255372</u>	<u>301</u>	<u>0.9954137179</u>	<u>325</u>	<u>0.9950798577</u>	<u>349</u>	<u>0.9946845005</u>
<u>254</u>	<u>0.9959380587</u>	<u>278</u>	<u>0.9957255372</u>	<u>302</u>	<u>0.9953849510</u>	<u>326</u>	<u>0.9950798577</u>	<u>350</u>	<u>0.9946845005</u>
<u>255</u>	<u>0.9959380587</u>	<u>279</u>	<u>0.9957255372</u>	<u>303</u>	<u>0.9953581531</u>	<u>327</u>	<u>0.9950798577</u>	<u>351</u>	0.9946845005
<u>256</u>	<u>0.9959380587</u>	<u>280</u>	<u>0.9957255372</u>	<u>304</u>	<u>0.9953445180</u>	<u>328</u>	<u>0.9950798577</u>	<u>352</u>	<u>0.9946845005</u>
<u>257</u>	<u>0.9959380587</u>	<u>281</u>	<u>0.9956914479</u>	<u>305</u>	<u>0.9953445180</u>	<u>329</u>	<u>0.9950798577</u>	<u>353</u>	<u>0.9946845005</u>
<u>258</u>	<u>0.9959272229</u>	<u>282</u>	<u>0.9956914479</u>	<u>306</u>	<u>0.9953445180</u>	<u>330</u>	<u>0.9950798577</u>	<u>354</u>	<u>0.9945854823</u>
<u>259</u>	<u>0.9959272229</u>	<u>283</u>	<u>0.9956914479</u>	<u>307</u>	<u>0.9953093054</u>	<u>331</u>	<u>0.9950798577</u>	<u>355</u>	<u>0.9945854823</u>
<u>260</u>	<u>0.9959225083</u>	<u>284</u>	<u>0.9956914479</u>	<u>308</u>	<u>0.9952957037</u>	<u>332</u>	<u>0.9950670017</u>	<u>356</u>	<u>0.9945720480</u>
<u>261</u>	<u>0.9959225083</u>	<u>285</u>	<u>0.9956797646</u>	<u>309</u>	<u>0.9952957037</u>	<u>333</u>	<u>0.9949858453</u>	<u>357</u>	<u>0.9945265776</u>
<u>262</u>	<u>0.9959225083</u>	<u>286</u>	<u>0.9956797646</u>	310	<u>0.9952741113</u>	334	<u>0.9949512121</u>	<u>358</u>	<u>0.9945265776</u>
<u>263</u>	<u>0.9959225083</u>	<u>287</u>	<u>0.9956797646</u>	<u>311</u>	<u>0.9952741113</u>	<u>335</u>	<u>0.9949512121</u>	<u>359</u>	<u>0.9945265776</u>
<u>264</u>	<u>0.9959225083</u>	<u>288</u>	<u>0.9956605860</u>	<u>312</u>	<u>0.9952514686</u>	<u>336</u>	<u>0.9949512121</u>	<u>360</u>	<u>0.9944766010</u>
265	<u>0.9959225083</u>	<u>289</u>	<u>0.9956605860</u>	<u>313</u>	<u>0.9952514686</u>	<u>337</u>	<u>0.9949369873</u>	<u>361</u>	<u>0.9944766010</u>
266	0.9958954164	<u>290</u>	<u>0.9956391439</u>	<u>314</u>	0.9952514686	<u>338</u>	0.9949369873	362	<u>0.9944766010</u>
267	<u>0.9957938685</u>	<u>291</u>	<u>0.9956391439</u>	<u>315</u>	<u>0.9952281619</u>	<u>339</u>	<u>0.9949369873</u>	<u>363</u>	<u>0.9944766010</u>
<u>268</u>	<u>0.9957938685</u>	<u>292</u>	<u>0.9955475237</u>	<u>316</u>	<u>0.9952281619</u>	<u>340</u>	<u>0.9949369873</u>	<u>364</u>	<u>0.9943896539</u>

218

~ ~ ~

219 220

Table 10-12: Baseline Post-Transplant Survival (STX(t)) Probability Where t=Time in Days

ŧ	S _{TX} (t)	ŧ	S _{TX} (t)	ŧ	S _{TX} (t)	ŧ	S _{TX} (t)	ŧ	S_{1x}(t)
0	1.0000000000	4 8	0.9818819454	97	0.9724145650	146	0.9651646731	195	0.9585852831
0	0.9989463518	49	0.9813940581	98	0.9724145650	<u>147</u>	0.9650179741	196	0.9585852831
1	0.9975582572	50	0.9811149797	99	0.9721278916	148	0.9650179741	197	0.9585106153
2	0.9968950221	51	0.9808357071	100	0.9719843820	149	0.9647244778	198	0.9583612369
3	0.9963635815	<u>52</u>	0.9804163818	101	0.9717688365	150	0.9646510762	<u>199</u>	0.9580621750
4	0.9954983869	53	0.9802065044	102	0.9716969486	151	0.9645042403	200	0.9580621750
5	0.9951651492	5 4	0.9801365116	103	0.9715531365	152	0.9643573707	201	0.9579873451
6	0.9945645668	55	0.9799264755	10 4	0.9713373330	153	0.9640634927	202	0.9579873451
7	0.9941636334	56	0.9796462096	105	0.9712653813	15 4	0.9638429283	203	0.9579125074
8	0.9939630137	57	0.9794358024	106	0.9711934225	155	0.9636958085	204	0.9577628083
9	0.9933601591	58	0.9790847785	107	0.9711214419	156	0.9634750547	205	0.9576130592
10	0.9931589002	59	0.9788739877	108	0.9710494372	157	0.9633278327	206	0.9575381540
11	0.9924871748	60	0.9787334069	109	0.9709774209	158	0.9631069028	207	0.9573882873
12	0.9923526429	61	0.9784520623	110	0.9707613132	159	0.9627384081	208	0.9573133332
13	0.9919487360	<u>62</u>	0.9783816832	111	0.9706892585	160	0.9625171483	209	0.9572383663
1 4	0.9916792045	63	0.9781704820	112	0.9706171946	161	0.9624433701	210	0.9571633895
15	0.9912068471	64	0.9781000588	113	0.9705451162	162	0.9622957853	211	0.9571633895
16	0.9905308509	65	0.9779591798	114	0.9704730247	163	0.9620743353	212	0.9569383725
17	0.9902600814	66	0.9778182436	115	0.9703288079	16 4	0.9619266457	<u>213</u>	0.9568633391
18	0.9899212765	67	0.9778182436	116	0.9699680182	165	0.9617049921	214	0.9567883006
19	0.9895819543	68	0.9775361418	117	0.9698236079	166	0.9616310727	215	0.9567132550
20	0.9895140131	69	0.9772537901	118	0.9696791597	167	0.9615571395	216	0.9566381918
21	0.9889017936	70	0.9770418835	119	0.9696069224	168	0.9614831983	<u>217</u>	0.9564880147
22	0.9882201168	71	0.9769712231	120	0.9693901236	169	0.9614831983	218	0.9562625865
23	0.9878104319	72	0.9769005466	121	0.9691008601	170	0.9614092449	219	0.9562625865
2 4	0.9874685977	73	0.9767590709	<u>122</u>	0.9689561390	171	0.9611132339	220	0.9561873965
25	0.9872633504	74	0.9765466782	123	0.9686665562	172	0.9611132339	221	0.9561121949
26	0.9870579950	75	0.9764758630	124	0.9685941382	173	0.9610391867	222	0.9560369867
27	0.9865784176	76	0.9761925132	125	0.9683767411	174	0.9609651281	<u>223</u>	0.9558865533
<u>28</u>	0.9863040866	77	0.9759089522	126	0.9681590825	175	0.9608910582	22 4	0.9557360679
29	0.9860295071	78	0.9757670435	127	0.9680864781	176	0.9607428635	225	0.9557360679

Briefing Paper

ŧ	S _{TX} (t)	ŧ	S _{TX} (t)	ŧ	S⊤×(t)	ŧ	S₁x(t)	ŧ	S _{TX} (t)
30	0.9859608276	79	0.9756250284	128	0.9678684348	177	0.9605945954	226	0.9557360679
31	0.9857547158	80	0.9754829371	<u>129</u>	0.9677956729	178	0.9604462255	<u>227</u>	0.9556608016
32	0.9854796626	81	0.9754829371	130	0.9675043666	179	0.9604462255	228	0.9556608016
33	0.9851355094	82	0.9754829371	131	0.9673585766	180	0.9603719931	229	0.9555102388
34	0.9849288641	83	0.9749850268	<u>132</u>	0.9671398110	181	0.9602977341	230	0.9555102388
35	0.9845152420	84	0.9749850268	133	0.9671398110	<u>182</u>	0.9601491697	<u>231</u>	0.9552089409
36	0.9844462708	85	0.9747001806	134	0.9669939177	183	0.9600748710	232	0.9552089409
37	0.9841701925	86	0.9747001806	135	0.9667019115	18 4	0.9598519074	233	0.9551335669
38	0.9838247337	87	0.9744152006	136	0.9664827327	185	0.9597775675	23 4	0.9549827718
39	0.9834789109	88	0.9739873157	137	0.9664827327	186	0.9597032090	235	0.9548319320
40	0.9832019349	89	0.9738445742	138	0.9664096522	187	0.9596288106	236	0.9546810412
4 <u>1</u>	0.9830633211	90	0.9736303735	139	0.9662634193	188	0.9595543795	237	0.9545300840
4 <u>2</u>	0.9828552725	91	0.9734160812	140	0.9661902639	189	0.9594799325	238	0.9544545732
4 3	0.9827164882	92	0.9734160812	141	0.9661902639	190	0.9592564778	239	0.9542279182
44	0.9825775890	93	0.9732016972	<u>142</u>	0.9659707159	191	0.9591074222	240	0.9542279182
4 5	0.9822995280	9 4	0.9730587142	<u>143</u>	0.9657510525	192	0.9590328768	241	0.9540767061
4 6	0.9821604041	95	0.9729156920	144	0.9656778054	193	0.9590328768	242	0.9540767061
4 7	0.9819515885	96	0.9726294362	145	0.9653113457	194	0.9587345577	243	0.9539254009
Conti	nued on next	əage)							

ŧ	S _{TX} (t)	ŧ	S _{TX} (t)	ŧ	SIX(t)	ŧ	SIX(t)	ŧ	S _{IX} (t)
2 44	0.9538497172	269	0.9511902217	<u>293</u>	0.9485888127	317	0.9463585089	341	0.9437285938
245	0.9538497172	270	0.9509612738	294	0.9483586281	318	0.9463585089	342	0.9436509982
246	0.9537740199	<u>271</u>	0.9506558210	<u>295</u>	0.9482818803	319	0.9462042511	3 43	0.9435733917
<u>247</u>	0.9537740199	<u>272</u>	0.9505794198	296	0.9481283428	320	0.9462042511	3 44	0.9434181618
<u>248</u>	0.9536983112	273	0.9504265693	<u>297</u>	0.9480515582	321	0.9461270863	3 45	0.9433405390
249	0.9536225901	274	0.9502736813	298	0.9479747621	322	0.9460499065	346	0.9431075841
250	0.9533952367	275	0.9501207590	<u>299</u>	0.9478210865	323	0.9460499065	347	0.9430298440
251	0.9533193886	276	0.9501207590	300	0.9476673351	32 4	0.9458955253	3 48	0.9430298440
252	0.9530158831	277	0.9498147874	301	0.9476673351	325	0.9458183199	349	0.9429520371
253	0.9530158831	278	0.9496617253	<u>302</u>	0.9473596856	326	0.9455866228	350	0.9427185272
25 4	0.9527122194	<u>279</u>	0.9496617253	303	0.9473596856	327	0.9454321012	351	0.9427185272
255	0.9527122194	280	0.9495851653	30 4	0.9473596856	328	0.9454321012	<u>352</u>	0.9427185272
256	0.9527122194	281	0.9495851653	305	0.9473596856	329	0.9453548209	353	0.9426406582
<u>257</u>	0.9524843651	<u>282</u>	0.9494319939	306	0.9472827362	330	0.9452775175	354	0.9424848995
<u>258</u>	0.9524083896	283	0.9493553886	307	0.9472827362	331	0.9451228653	355	0.9424848995
259	0.9523323977	284	0.9492787721	308	0.9472057776	332	0.9451228653	356	0.9421732641
260	0.9522563886	285	0.9492787721	309	0.9471288083	333	0.9449681796	357	0.9420173651
261	0.9521803676	286	0.9492021461	310	0.9469748345	33 4	0.9448908227	358	0.9417833903
262	0.9521043365	287	0.9492021461	311	0.9468208245	335	0.9447360580	359	0.9417053586
263	0.9518761834	288	0.9491255112	312	0.9468208245	336	0.9445812189	360	0.9416273052
26 4	0.9518000820	<u>289</u>	0.9490488687	313	0.9468208245	337	0.9445037758	361	0.9415492338
265	0.9516477499	290	0.9488955575	31 4	0.9467438071	338	0.9441938892	362	0.9415492338
266	0.9516477499	291	0.9488188902	315	0.9465897325	339	0.9440388525	363	0.9413148953
267	0.9515715365	<u>292</u>	0.9488188902	316	0.9464356005	340	0.9439613054	36 4	0.9413148953
268	0.9514952979								

225

226

<u>t</u>	<u>S_{TX}(t)</u>	<u>t</u>	<u>S_{TX}(t)</u>	<u>t</u>	<u>S_{TX}(t)</u>	t	<u>S_{TX}(t)</u>	t	<u>S_{TX}(t)</u>
0	1.0000000000	49	0.9859396692	98	0.9804349392	147	0.9760079584	196	0.9711061937
1	0.9989168684	50	0.9858164949	99	0.9801864682	148	0.9759453602	197	0.9708538746
2	0.9984346294	51	0.9855701194	100	0.980000394	149	0.9758201487	198	0.9706645555
3	0.9977712423	52	0.9855701194	101	0.9799378767	150	0.9757575320	199	0.9705383076
4	0.9973484709	53	0.9853236329	102	0.9798135405	151	0.9757575320	200	0.9703489195
5	0.9970462337	54	0.9850154170	103	0.9796891562	152	0.9754444350	201	0.9702226203
6	0.9965625190	55	0.9847070827	104	0.9796891562	153	0.9753817621	202	0.9700962568
7	0.9961993881	56	0.9846453556	105	0.9796891562	154	0.9752564117	203	0.9699066925
8	0.9958966278	57	0.9844601577	106	0.9796269487	155	0.9751937214	204	0.9698434819
9	0.9954724846	<u>58</u>	0.9842749162	<u>107</u>	0.9794403086	156	0.9751310267	205	0.9698434819
<u>10</u>	0.9951086930	<u>59</u>	<u>0.9841513879</u>	<u>108</u>	<u>0.9793780730</u>	<u>157</u>	0.9750683237	206	0.9697802663
<u>11</u>	0.9948053130	<u>60</u>	0.9838425267	<u>109</u>	0.9793158337	<u>158</u>	0.9748802003	207	0.9694642073
<u>12</u>	0.9942589911	<u>61</u>	<u>0.9837807200</u>	<u>110</u>	0.9792535831	<u>159</u>	0.9748174678	208	0.9693376951
<u>13</u>	0.9941374518	<u>62</u>	<u>0.9835952969</u>	<u>111</u>	<u>0.9792535831</u>	<u>160</u>	<u>0.9747547321</u>	<u>209</u>	0.9692111628
<u>14</u>	0.9938943616	<u>63</u>	<u>0.9835334714</u>	<u>112</u>	<u>0.9791290692</u>	<u>161</u>	<u>0.9746919892</u>	<u>210</u>	0.9691478845
<u>15</u>	0.9936511061	<u>64</u>	<u>0.9834716335</u>	<u>113</u>	<u>0.9790668010</u>	<u>162</u>	<u>0.9746292392</u>	<u>211</u>	0.9691478845
<u>16</u>	0.9932859829	<u>65</u>	<u>0.9832242857</u>	<u>114</u>	0.9788176541	<u>163</u>	0.9745037272	212	0.9691478845
<u>17</u>	<u>0.9931032767</u>	<u>66</u>	<u>0.9831624223</u>	<u>115</u>	<u>0.9787553419</u>	<u>164</u>	0.9744409567	<u>213</u>	<u>0.9690213151</u>
<u>18</u>	0.9927987155	<u>67</u>	<u>0.9831624223</u>	<u>116</u>	0.9786930245	<u>165</u>	<u>0.9743154118</u>	<u>214</u>	0.9688947255
<u>19</u>	0.9925549731	<u>68</u>	<u>0.9830386904</u>	<u>117</u>	<u>0.9786307023</u>	166	<u>0.9741898451</u>	215	0.9687681067
<u>20</u>	<u>0.9924330443</u>	<u>69</u>	<u>0.9827292921</u>	<u>118</u>	<u>0.9785060459</u>	<u>167</u>	<u>0.9741270468</u>	<u>216</u>	<u>0.9687681067</u>
<u>21</u>	<u>0.9921891249</u>	<u>70</u>	<u>0.9824197258</u>	<u>119</u>	<u>0.9785060459</u>	<u>168</u>	<u>0.9741270468</u>	<u>217</u>	<u>0.9687681067</u>
<u>22</u>	<u>0.9920061484</u>	<u>71</u>	<u>0.9823577717</u>	<u>120</u>	<u>0.9783190327</u>	<u>169</u>	<u>0.9740014458</u>	<u>218</u>	<u>0.9686414652</u>
23	<u>0.9916401290</u>	<u>72</u>	<u>0.9822338558</u>	<u>121</u>	0.9782566683	<u>170</u>	<u>0.9738758131</u>	219	0.9685147964
<u>24</u>	<u>0.9914570116</u>	<u>73</u>	<u>0.9821718893</u>	<u>122</u>	<u>0.9781942967</u>	<u>171</u>	<u>0.9738758131</u>	<u>220</u>	<u>0.9684514491</u>
<u>25</u>	<u>0.9913959504</u>	<u>74</u>	<u>0.9821718893</u>	<u>123</u>	<u>0.9781319182</u>	<u>172</u>	<u>0.9736245232</u>	<u>221</u>	<u>0.9683880937</u>
<u>26</u>	<u>0.9910906393</u>	<u>75</u>	<u>0.9821718893</u>	<u>124</u>	<u>0.9779447835</u>	<u>173</u>	<u>0.9735616621</u>	<u>222</u>	<u>0.9682613699</u>
<u>27</u>	<u>0.9909073743</u>	<u>76</u>	<u>0.9821099189</u>	<u>125</u>	<u>0.9779447835</u>	<u>174</u>	<u>0.9734359312</u>	<u>223</u>	<u>0.9681979935</u>
<u>28</u>	<u>0.9904797245</u>	<u>77</u>	<u>0.9820479459</u>	<u>126</u>	<u>0.9778200018</u>	<u>175</u>	<u>0.9733101762</u>	<u>224</u>	<u>0.9681346105</u>
<u>29</u>	<u>0.9899294478</u>	<u>78</u>	<u>0.9819859697</u>	<u>127</u>	<u>0.9777575984</u>	<u>176</u>	<u>0.9732472868</u>	<u>225</u>	<u>0.9681346105</u>
<u>30</u>	<u>0.9898070359</u>	<u>79</u>	<u>0.9819239837</u>	<u>128</u>	<u>0.9777575984</u>	<u>177</u>	<u>0.9729957417</u>	<u>226</u>	<u>0.9681346105</u>
<u>31</u>	<u>0.9891950158</u>	<u>80</u>	<u>0.9818000096</u>	<u>129</u>	<u>0.9777575984</u>	<u>178</u>	<u>0.9729957417</u>	<u>227</u>	<u>0.9678810937</u>
<u>32</u>	<u>0.9887660579</u>	<u>81</u>	<u>0.9818000096</u>	<u>130</u>	<u>0.9777575984</u>	<u>179</u>	<u>0.9729328284</u>	<u>228</u>	<u>0.9678810937</u>
<u>33</u>	0.9886434002	<u>82</u>	<u>0.9817380113</u>	<u>131</u>	<u>0.9776951904</u>	<u>180</u>	<u>0.9728069960</u>	<u>229</u>	<u>0.9676274650</u>
<u>34</u>	<u>0.9884593786</u>	<u>83</u>	<u>0.9816760095</u>	<u>132</u>	<u>0.9775703575</u>	<u>181</u>	<u>0.9728069960</u>	<u>230</u>	<u>0.9675640123</u>
<u>35</u>	<u>0.9880912671</u>	<u>84</u>	<u>0.9816760095</u>	<u>133</u>	<u>0.9775703575</u>	<u>182</u>	<u>0.9724923862</u>	<u>231</u>	<u>0.9675005516</u>
<u>36</u>	<u>0.9879070815</u>	<u>85</u>	<u>0.9816140030</u>	<u>134</u>	<u>0.9775703575</u>	<u>183</u>	<u>0.9724923862</u>	<u>232</u>	<u>0.9675005516</u>
<u>37</u>	<u>0.9877842742</u>	<u>86</u>	<u>0.9814899878</u>	<u>135</u>	<u>0.9775079236</u>	<u>184</u>	<u>0.9723664833</u>	<u>233</u>	<u>0.9675005516</u>
<u>38</u>	<u>0.9873544476</u>	<u>87</u>	<u>0.9813659495</u>	<u>136</u>	<u>0.9772581879</u>	<u>185</u>	<u>0.9723035158</u>	<u>234</u>	<u>0.9672466908</u>
<u>39</u>	<u>0.9871700789</u>	<u>88</u>	<u>0.9812418882</u>	<u>137</u>	<u>0.9771332758</u>	<u>186</u>	<u>0.9721146241</u>	<u>235</u>	<u>0.9669292385</u>
<u>40</u>	<u>0.9869242045</u>	<u>89</u>	0.9811178010	<u>138</u>	<u>0.9771332758</u>	<u>187</u>	<u>0.9720516381</u>	<u>236</u>	<u>0.9667386173</u>
<u>41</u>	0.9869242045	<u>90</u>	<u>0.9811178010</u>	<u>139</u>	<u>0.9769458756</u>	<u>188</u>	0.9719256562	<u>237</u>	<u>0.9666114980</u>
<u>42</u>	<u>0.9868627089</u>	<u>91</u>	<u>0.9809936908</u>	<u>140</u>	<u>0.9767584228</u>	<u>189</u>	<u>0.9716736755</u>	<u>238</u>	<u>0.9664843455</u>
<u>43</u>	<u>0.9866167108</u>	<u>92</u>	<u>0.9809936908</u>	<u>141</u>	<u>0.9766959165</u>	<u>190</u>	0.9715476030	<u>239</u>	<u>0.9664843455</u>
<u>44</u>	0.9865551891	<u>93</u>	0.9809936908	<u>142</u>	<u>0.9766959165</u>	<u>191</u>	0.9712954163	<u>240</u>	0.9664207511
<u>45</u>	0.9864321394	<u>94</u>	0.9808074944	<u>143</u>	<u>0.9765708928</u>	<u>192</u>	0.9712323468	<u>241</u>	<u>0.9663571531</u>
<u>46</u>	<u>0.9863705962</u>	<u>95</u>	<u>0.9808074944</u>	<u>144</u>	<u>0.9763207692</u>	<u>193</u>	<u>0.9711692727</u>	<u>242</u>	<u>0.9661663551</u>
<u>47</u>	0.9861243805	<u>96</u>	0.9806833301	<u>145</u>	<u>0.9763207692</u>	<u>194</u>	0.9711061937	<u>243</u>	<u>0.9660391221</u>
<u>48</u>	<u>0.9859396692</u>	<u>97</u>	<u>0.9804970537</u>	<u>146</u>	<u>0.9760705488</u>	<u>195</u>	<u>0.9711061937</u>	<u>244</u>	<u>0.9659118728</u>

(<u>Continued on next page)</u> Table 10-12: Baseline Post-Transplant Survival (S_{TX}(t)) Probability Where t=Time in Days (Continued)

<u>t</u>	<u>S_{Tx}(t)</u>	t	<u>S_{TX}(t)</u>	t	<u>S_{TX}(t)</u>	t	<u>S_{TX}(t)</u>	t	<u>S_Tx(t)</u>
<u>245</u>	0.9659118728	<u>269</u>	<u>0.9632965280</u>	<u>293</u>	<u>0.9611192441</u>	<u>317</u>	<u>0.9586128181</u>	<u>341</u>	<u>0.9555806338</u>
<u>246</u>	0.9657209456	<u>270</u>	<u>0.9631686533</u>	<u>294</u>	<u>0.9609908927</u>	<u>318</u>	<u>0.9585484383</u>	<u>342</u>	<u>0.9555806338</u>
<u>247</u>	<u>0.9657209456</u>	<u>271</u>	<u>0.9631686533</u>	<u>295</u>	<u>0.9609908927</u>	<u>319</u>	<u>0.9585484383</u>	343	<u>0.9555159535</u>
<u>248</u>	0.9655936296	<u>272</u>	<u>0.9631686533</u>	<u>296</u>	<u>0.9607341600</u>	<u>320</u>	<u>0.9584840545</u>	<u>344</u>	<u>0.9554512674</u>
<u>249</u>	<u>0.9655299608</u>	<u>273</u>	<u>0.9631686533</u>	<u>297</u>	<u>0.9606699547</u>	<u>321</u>	<u>0.9584196607</u>	<u>345</u>	<u>0.9553865754</u>

t	<u>Sтх(t)</u>	t	<u>S_tx(t)</u>	t	<u>S</u> τx(t)	t	<u>S_{Tx}(t)</u>	t	<u>Sтх(t)</u>
250	0.9655299608	274	0.9629768044	298	0.9605415356	322	0.9582908711	346	0.9553865754
251	0.9654662741	275	0.9629128396	299	0.9604130979	323	0.9582908711	347	0.9553218775
252	0.9654662741	276	0.9628488713	300	0.9604130979	324	0.9580976632	348	0.9552571738
253	0.9652115383	277	0.9627209262	301	0.9604130979	325	0.9579688088	349	0.9550630638
254	0.9650840942	278	0.9627209262	302	0.9602846512	<u>326</u>	0.9579688088	350	0.9550630638
<u>255</u>	0.9648928664	<u>279</u>	<u>0.9625929760</u>	<u>303</u>	0.9602204141	<u>327</u>	0.9579043700	<u>351</u>	0.9548041910
<u>256</u>	<u>0.9647015529</u>	<u>280</u>	<u>0.9625929760</u>	<u>304</u>	<u>0.9600277027</u>	<u>328</u>	<u>0.9577754767</u>	<u>352</u>	0.9546099416
<u>257</u>	0.9646377632	<u>281</u>	0.9625289763	305	0.9599634408	<u>329</u>	0.9577754767	353	0.9544803563
<u>258</u>	<u>0.9645739650</u>	<u>282</u>	<u>0.9623369773</u>	<u>306</u>	<u>0.9599634408</u>	<u>330</u>	<u>0.9577110163</u>	<u>354</u>	<u>0.9544803563</u>
<u>259</u>	<u>0.9645101605</u>	283	<u>0.9623369773</u>	<u>307</u>	<u>0.9598349128</u>	<u>331</u>	<u>0.9576465538</u>	<u>355</u>	<u>0.9544155483</u>
<u>260</u>	<u>0.9643187339</u>	<u>284</u>	<u>0.9623369773</u>	<u>308</u>	<u>0.9596420886</u>	<u>332</u>	<u>0.9574531426</u>	<u>356</u>	<u>0.9542211322</u>
<u>261</u>	0.9642548867	<u>285</u>	0.9621448872	309	0.9595777902	333	0.9572596959	<u>357</u>	0.9539618458
<u>262</u>	<u>0.9641910389</u>	<u>286</u>	<u>0.9618886886</u>	<u>310</u>	<u>0.9594491836</u>	<u>334</u>	<u>0.9569371935</u>	<u>358</u>	<u>0.9538321500</u>
<u>263</u>	<u>0.9640633401</u>	<u>287</u>	<u>0.9617605348</u>	<u>311</u>	<u>0.9593205637</u>	<u>335</u>	<u>0.9566145449</u>	<u>359</u>	<u>0.9537024130</u>
264	0.9638717349	288	<u>0.9617605348</u>	<u>312</u>	<u>0.9591919322</u>	<u>336</u>	<u>0.9564208317</u>	<u>360</u>	<u>0.9535077925</u>
<u>265</u>	<u>0.9638078451</u>	<u>289</u>	<u>0.9616964401</u>	<u>313</u>	<u>0.9590632846</u>	<u>337</u>	<u>0.9561624675</u>	<u>361</u>	<u>0.9535077925</u>
<u>266</u>	<u>0.9636800525</u>	<u>290</u>	<u>0.9614400217</u>	<u>314</u>	0.9589346060	<u>338</u>	<u>0.9560332045</u>	<u>362</u>	<u>0.9535077925</u>
<u>267</u>	<u>0.9635522259</u>	<u>291</u>	<u>0.9614400217</u>	<u>315</u>	<u>0.9588059096</u>	<u>339</u>	<u>0.9559039159</u>	<u>363</u>	<u>0.9535077925</u>
<u>268</u>	<u>0.9634883010</u>	<u>292</u>	<u>0.9612475822</u>	<u>316</u>	<u>0.9587415497</u>	<u>340</u>	<u>0.9556453115</u>	<u>364</u>	<u>0.9535077925</u>

229 230

#